0000000001316296
AUTHOR
Tuula Larmola
The role ofSphagnummosses in the methane cycling of a boreal mire
Peatlands are a major natural source of atmospheric methane (CH4). Emissions from Sphagnum-dominated mires are lower than those measured from other mire types. This observation may partly be due to methanotrophic (i.e., methane-consuming) bacteria associated with Sphagnum. Twenty-three of the 41 Sphagnum species in Finland can be found in the peatland at Lakkasuo. To better understand the Sphagnum-methanotroph system, we tested the following hypotheses: (1) all these Sphagnum species support methanotrophic bacteria; (2) water level is the key environmental determinant for differences in methanotrophy across habitats; (3) under dry conditions, Sphagnum species will not host methanotrophic ba…
Methanotrophy induces nitrogen fixation during peatland development
Significance In peatlands, the external sources of nitrogen are mainly atmospheric, but the atmospheric nitrogen deposition alone cannot explain the long-term annual nitrogen accumulation rates to these ecosystems. Because of methodological problems, methane-induced fixation of atmospheric dinitrogen gas has been previously overlooked as an additional nitrogen input mechanism. We found that the activity of methane-oxidizing bacteria provides not only carbon but also nitrogen to peat mosses and, thus, contributes to carbon and nitrogen accumulation in peatlands, which store approximately one-third of the global soil carbon pool. Our results imply that nitrogen fixation in wetlands may be str…
Appendix A. Potential methane oxidation rates detailed by Sphagnum species, habitat, water level, and methane concentration.
Potential methane oxidation rates detailed by Sphagnum species, habitat, water level, and methane concentration.