0000000001316374

AUTHOR

Abhyudai Singh

showing 5 related works from this author

Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configurati…

2020

mRNA homoeostasis is favoured by crosstalk between transcription and degradation machineries. Both the Ccr4-Not and the Xrn1-decaysome complexes have been described to influence transcription. While Ccr4-Not has been shown to directly stimulate transcription elongation, the information available on how Xrn1 influences transcription is scarce and contradictory. In this study we have addressed this issue by mapping RNA polymerase II (RNA pol II) at high resolution, using CRAC and BioGRO-seq techniques in Saccharomyces cerevisiae. We found significant effects of Xrn1 perturbation on RNA pol II profiles across the genome. RNA pol II profiles at 5ʹ exhibited significant alterations that were com…

mRNA bufferingSaccharomyces cerevisiae ProteinsTranscription Elongation GeneticTranscription elongationPolyadenylationSaccharomyces cerevisiaeMRNA DecayRNA polymerase IISaccharomyces cerevisiaeTranscription elongation03 medical and health sciences0302 clinical medicinemRNA decayTranscription (biology)RNA decay/gene transcription crosstalkGene Expression Regulation FungalNucleosomemRNA decay/gene transcription crosstalkMolecular BiologyXrn1Gene030304 developmental biology0303 health sciencesMessenger RNAbiologyChemistryCell Biologybiology.organism_classificationRNA bufferingmChromatinChromatinCell biologyNucleosomesCrosstalk (biology)3ʹ pre-mRNA processing030220 oncology & carcinogenesisXrn13ʹExoribonucleasesbiology.proteinpre-mRNA processingmRNA Polymerase IITranscriptional Elongation FactorsResearch PaperRNA biology
researchProduct

Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast

2019

AbstractThe adjustment of transcription and translation rates to variable needs is of utmost importance for the fitness and survival of living cells. We have previously shown that the global transcription rate for RNA polymerase II is regulated differently in cells presenting symmetrical or asymmetrical cell division. The budding yeast Saccharomyces cerevisiae adopts a particular strategy to avoid that the smaller daughter cells increase their total mRNA concentration with every generation. The global mRNA synthesis rate lowers with a growing cell volume, but global mRNA stability increases. In this paper, we address what the solution is to the same theoretical problem for the RNA polymeras…

Messenger RNACell divisionTranscription (biology)Saccharomyces cerevisiaeRNA polymerase Ibiology.proteinRNA polymerase IIBiologyRibosomal RNAbiology.organism_classificationGeneCell biology
researchProduct

Asymmetric cell division requires specific mechanisms for adjusting global transcription

2017

Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actualmRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a neverending increasing mRNA synthesis rate in sma…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticCell divisionRNA StabilitySaccharomyces cerevisiaeSaccharomyces cerevisiaeCell fate determinationBiotecnologia03 medical and health sciences0302 clinical medicineRNA Polymerase ITranscription (biology)GeneticsAsymmetric cell divisionRNA MessengerCèl·lules DivisióMolecular BiologyCell SizeMessenger RNAbiologyCell CycleRNADNA-Directed RNA Polymerasesbiology.organism_classificationYeastCell biology030104 developmental biologyCell Division030217 neurology & neurosurgeryNucleic Acids Research
researchProduct

Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast

2021

[Abstract] The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell s…

Cancer ResearchTranscription GeneticCellGene ExpressionRNA polymerase IIYeast and Fungal ModelsProtein SynthesisQH426-470HaploidyBiochemistryPolymerasesSirtuin 2Transcription (biology)RNA Polymerase IHomeostasisCell Cycle and Cell DivisionGenetics (clinical)Silent Information Regulator Proteins Saccharomyces cerevisiaebiologyTranscriptional ControlEukaryotaChemical SynthesisGenomicsCell biologyNucleic acidsmedicine.anatomical_structureExperimental Organism SystemsRibosomal RNARNA polymeraseCell ProcessesRNA Polymerase IIResearch ArticleCell biologyCellular structures and organellesSaccharomyces cerevisiae ProteinsBiosynthetic TechniquesSaccharomyces cerevisiaeSaccharomyces cerevisiaeResearch and Analysis MethodsDNA RibosomalSaccharomycesModel OrganismsCyclinsDNA-binding proteinsmedicineRNA polymerase IGeneticsGene RegulationNon-coding RNAMolecular BiologyEcology Evolution Behavior and SystematicsCell SizeMessenger RNACèl·lules eucariotesOrganismsFungiRNABiology and Life SciencesProteinsGenes rRNARibosomal RNAModels Theoreticalbiology.organism_classificationYeastGenòmicabiology.proteinAnimal StudiesRNARibosomes
researchProduct

Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configurati…

2020

mRNA homoeostasis is favoured by crosstalk between transcription and degradation machineries. Both the Ccr4-Not and the Xrn1-decaysome complexes have been described to influence transcription. While Ccr4-Not has been shown to directly stimulate transcription elongation, the information available on how Xrn1 influences transcription is scarce and contradictory. In this study we have addressed this issue by mapping RNA polymerase II (RNA pol II) at high resolution, using CRAC and BioGRO-seq techniques in Saccharomyces cerevisiae. We found significant effects of Xrn1 perturbation on RNA pol II profiles across the genome. RNA pol II profiles at 5ʹ exhibited significant alterations that were com…

researchProduct