0000000001316724

AUTHOR

Claudio Schrenk

showing 5 related works from this author

Reactions with a Metalloid Tin Cluster {Sn10[Si(SiMe3)3]4}(2-): Ligand Elimination versus Coordination Chemistry.

2015

Chemistry that uses metalloid tin clusters as a start- ing material is of fundamental interest towards understand- ing the reactivity of such compounds. Since we identified {Sn10(Si(SiMe3)3)4} 2� 7 as an ideal candidate for such reactions, we present a further step in the understanding of metalloid tin cluster chemistry. In contrast to germanium chemistry, ligand elimination seems to be a major reaction channel, which leads to the more open metalloid cluster {Sn10(Si(SiMe3)3)3} � 9, in which the Sn core is only shielded by three Si(SiMe3)3 ligands. Compound 9 is obtained through different routes and is crystallised together with two differ- ent countercations. Besides the structural charact…

chemistry.chemical_classificationLigandOrganic ChemistryCluster chemistryInorganic chemistrychemistry.chemical_elementGermaniumGeneral ChemistryCatalysisCoordination complexquantum chemistryCrystallographychemistrymetalloid clustersligand eliminationtinCluster (physics)cluster compoundsReactivity (chemistry)MetalloidTinta116Chemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Au70S20(PPh3)12: an intermediate sized metalloid gold cluster stabilized by the Au4S4 ring motif and Au-PPh3 groups

2018

Reducing (Ph3P)AuSC(SiMe3)3 with L-Selectride® gives the medium-sized metalloid gold cluster Au70S20(PPh3)12. Computational studies show that the phosphine bound Au-atoms not only stabilize the electronic structure of Au70S20(PPh3)12, but also behave as electron acceptors leading to auride-like gold atoms on the exterior.

Inorganic chemistry02 engineering and technologyElectronic structure010402 general chemistryRing (chemistry)01 natural scienceskultaCatalysischemistry.chemical_compoundMaterials Chemistryta116chemistry.chemical_classificationGold clusterChemistryMetals and AlloysGeneral ChemistrygoldElectron acceptor021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyCeramics and CompositesnanohiukkasetnanoparticlesMetalloid0210 nano-technologyPhosphineChemical Communications
researchProduct

CCDC 1044696: Experimental Crystal Structure Determination

2015

Related Article: Claudio Schrenk, Birgit Gerke, Rainer Pöttgen, Andre Clayborne, Andreas Schnepf|2015|Chem.-Eur.J.|21|8222|doi:10.1002/chem.201500550

Space GroupCrystallographyCrystal SystemCrystal Structurebis(NNN'N'-tetramethylethylenediamine)-lithium tris(tris(trimethylsilyl)silyl)-deca-tin (NNN'N'-tetramethylethylenediamine)-chloro-(tris(trimethylsilyl)silyl)-zinc toluene solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1575582: Experimental Crystal Structure Determination

2017

Related Article: Sebastian Kenzler, Claudio Schrenk, Andrew R. Frojd, Hannu Häkkinen, Andre Z. Clayborne, Andreas Schnepf|2018|Chem.Commun.|54|248|doi:10.1039/C7CC08014J

Space GroupCrystallographyCrystal Systemicosakis(mu-sulfido)-dodecakis(triphenylphosphine)-heptaconta-goldCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1044697: Experimental Crystal Structure Determination

2015

Related Article: Claudio Schrenk, Birgit Gerke, Rainer Pöttgen, Andre Clayborne, Andreas Schnepf|2015|Chem.-Eur.J.|21|8222|doi:10.1002/chem.201500550

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(12-crown-4)-lithium tris(tris(trimethylsilyl)silyl)-deca-tin hemikis(12-crown-4) tetrahydrofuran toluene solvateExperimental 3D Coordinates
researchProduct