0000000001317472

AUTHOR

Stephen Blake

Gradients in physical parameters in zoned felsic magma bodies: Implications for evolution and eruptive withdrawal

Abstract Five diverse, well documented, chemically zoned magmas have been chosen from the literature to demonstrate the extent and patterns of density and viscosity gradients in zoned magma chambers. The patterns are used to assess implications for development of zonation, and withdrawal dynamics and preservation of systematic chemical variations in the final pyroclastic deposit. These examples are: Bishop Tuff, California (high-silica rhyolite); Los Humeros, Mexico (calc-alkaline rhyolite to andesite); Fogo A, Azores (trachyte); Laacher See, Eifel (phonolite) and Tenerife, Canary Islands (phonolite). It was necessary to make several simplifying assumptions in order to calculate viscosity a…

research product

Moving in the Anthropocene: Global reductions in terrestrial mammalian movements

Made available in DSpace on 2018-11-26T17:44:52Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-01-26 Robert Bosch Foundation Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-…

research product

Data from: Moving in the Anthropocene: global reductions in terrestrial mammalian movements

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects no…

research product