0000000001318565

AUTHOR

Fanny Vogelweith

showing 18 related works from this author

Age, sex, mating status, but not social isolation interact to shape basal immunity in a group-living insect

2017

International audience; Immunity is a crucial but costly trait. Individuals should therefore adjust their investment into immunity to their condition and infection risks, which are often determined by their age, sex, mating status and social environment. However, whether and how these four key factors can interact to shape basal immunity remains poorly understood. Here, we tested the simultaneous effects of these factors on hemocyte concentration and phenoloxidase activity in adults of the European earwig. We found that hemocyte concentration increased with age, and that this increase was stronger in males. We also found an age-dependent increase in phenoloxidase activity in males and virgi…

0106 biological sciences0301 basic medicineMaleAgingInsectaPhysiologysocial isolation[SDV]Life Sciences [q-bio]PhysiologyForficula auricularia010603 evolutionary biology01 natural sciences03 medical and health sciencesBasal (phylogenetics)Forficula auriculariaSexual Behavior AnimalImmune systemSex FactorsImmunitymedicineAnimalssexSocial isolationMatinginsect immunitybiologyEcology[SDV.BA]Life Sciences [q-bio]/Animal biologyAge FactorsSocial environmentbiochemical phenomena metabolism and nutritionbiology.organism_classificationmating[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology030104 developmental biologyInsect ScienceEarwigbacteriaFemalemedicine.symptom
researchProduct

Biological protection against grape berry moths. A review

2018

International audience; Grape is a major crop, covering 7.5 M ha worldwide, that is currently being confronted with three main challenges: intensive pesticide use that must be reduced, invasion by new pests/diseases, and climate change. The biological control of pests and vectors would help address these challenges. Here, we review the scientific literature on the biological control of grape moths by macroorganisms (excluding nematodes). Two components, biological control with an active human role, mainly using biocontrol agents through inundation or inoculation, and conservation biological control, are considered. The major points are the following. (1) Tortricid grape moths seriously dama…

Landscape architecture0106 biological sciencesEnvironmental EngineeringLobesia botrana;Eupoecilia ambiguella;biodiversity;agroecology;viticulture;agricultural practices;landscape architecture;parasitoids;predators[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomyBiological pest controlBiologyLobesia botrana010603 evolutionary biology01 natural sciencesPredationvitis vinifera[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyLobesia botrana[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/Symbiosis2. Zero hunger[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyViticultureParasitoidsResistance (ecology)business.industryAgroforestryfungiPest controlfood and beveragesBiodiversity15. Life on landbiology.organism_classificationPredatorsAgricultural practices010602 entomologyEupoecilia ambiguella13. Climate actionAgriculturePEST analysis[SDE.BE]Environmental Sciences/Biodiversity and EcologyViticulturevignebusinessAgronomy and Crop Sciencecontrôle biologiqueAgroecology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisAgronomy for Sustainable Development
researchProduct

Cover crop differentially affects arthropods, but not diseases, occurring on grape leaves in vineyards

2017

Background and Aims Cover crop has become a common management practice in viticulture. It improves the structure and protects the soil, enhances natural enemy populations and also reduces the vigour of the vine. Here, we investigated the effect of cover crop in vineyards on grapevine diseases and arthropods present on leaves. Methods and Results We measured the presence of the pathogens Plasmopara viticola, Uncinula necator and Guignardia bidwellii and monitored six common beneficial/pest arthropods: Panonychus ulmi, Orthotydeus lambi, Typhlodromus pyri, Scaphoideus titanus and Phalangium opilio in vineyards with cover crop or bare soil in 2014 and 2015. The density of the two pests P. ulmi…

0106 biological sciences2. Zero hungerIntegrated pest managementUncinula necatoreducation.field_of_studyPanonychus ulmibiologyPopulation15. Life on landHorticulturebiology.organism_classification01 natural sciencesPhalangium opilioScaphoideus titanus010602 entomologyHorticultureAgronomyPEST analysisCover cropeducation010606 plant biology & botanyAustralian Journal of Grape and Wine Research
researchProduct

Lobesia botrana larvae develop faster in the presence of parasitoids.

2013

3 pages; International audience; To combat parasitism hosts often rely on their immune system, which is the last line of defense. However, the immune system may not always be effective, and other non-immunological defenses might be favored to reduce the cost of parasite infection. Here we report that larvae of the moth Lobesia botrana can rapidly accelerate their development and reach maturity earlier in response to cues perceived at a distance from parasitoids. Such a phenotypically plastic life history shift, induced by the perception of deadly enemies in the environment, is likely to be an adaptive defensive strategy to prevent parasitoid attack, and has important implications in host-pa…

0106 biological sciencessystème immunitairelcsh:MedicineMothsLobesia botrana01 natural sciencesParasitoidBehavioral Ecology[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/Symbiosislobesia botranaLife historycroissance des larveslcsh:Science0303 health sciencesLarvaMultidisciplinarybiologyEcologyAnimal BehaviorEcologyAdaptation PhysiologicallarveCommunity EcologyLarvaResearch Article[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyParasitism010603 evolutionary biologyMicrobiology03 medical and health sciencesAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyBiology030304 developmental biologyEvolutionary Biology[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologyparasitoïdelcsh:Rfungibiology.organism_classificationSpecies InteractionsEvolutionary Ecologylcsh:QParasitologyAdaptation[SDE.BE]Environmental Sciences/Biodiversity and EcologyZoologyEntomologyintéraction hôte parasite[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

No evidence of an immune adjustment in response to a parasitoid threat in Lobesia botrana larvae.

2017

5 pages; International audience; Immune function is a key determinant of an organism's fitness, and natural insect populations are highly variable for this trait, mainly due to environmental heterogeneity and pathogen diversity. We previously reported a positive correlation between infection prevalence by parasitoids and host immunity in natural populations of the vineyard pest Lobesia botrana. Here, we tested whether this correlation reflects a plastic adjustment of host immunity in response to the local presence of parasites. To this end, we measured immunity of non-parasitized L. botrana larvae exposed, respectively, to one of the two most common species of parasitoids in vineyards, over…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyHemocytesPlasticityPhysiologymedia_common.quotation_subjectWaspsInsectMothsLobesia botrana010603 evolutionary biology01 natural sciences[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunityParasitoidImmune systemCommon speciesImmunity[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimals[ SDV.IMM ] Life Sciences [q-bio]/Immunology[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyComputingMilieux_MISCELLANEOUSmedia_commonLarvaEnzyme PrecursorsbiologyGrapevine mothEcologyProphylaxis[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]fungiCampoplex capitatorbiology.organism_classification[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology010602 entomologyPhytomiptera nigrinaInsect ScienceLarvaInsect immunityInsect Proteins[SDV.IMM]Life Sciences [q-bio]/ImmunologyPEST analysisCatechol Oxidase[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Offspring reverse transcriptome responses to maternal deprivation when reared with pathogens in an insect with facultative family life

2020

Offspring of species with facultative family life are able to live with and without parents (i.e. to adjust to extreme changes in their social environment). While these adjustments are well understood on a phenotypic level, their genetic underpinnings remain surprisingly understudied. Investigating gene expression changes in response to parental absence may elucidate the genetic constraints driving evolutionary transitions between solitary and family life. Here, we manipulated maternal presence to observe gene expression changes in the fat body of juvenile European earwigs, an insect with facultative family life. Because parents typically protect offspring against pathogens, expression chan…

0106 biological sciencesMaleInsectaOffspringEvolution[SDV]Life Sciences [q-bio]Biology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyTranscriptome03 medical and health sciencesAnimalsGeneComputingMilieux_MISCELLANEOUS030304 developmental biologyGeneral Environmental ScienceGenetics0303 health sciencesMaternal deprivationFacultativeGeneral Immunology and MicrobiologyBehavior Animal[SDV.BA]Life Sciences [q-bio]/Animal biologyGeneral MedicinePhenotypeBiological EvolutionFamily life[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyFemalesense organsGeneral Agricultural and Biological SciencesTranscriptomePaternal care
researchProduct

Contrôle des ravageurs de cultures par les ennemis naturels : la plante hôte facteur régulateur du système immunitaire des chenilles de vers de la gr…

2013

10 pages; National audience; En raison des nombreux dégâts occasionnés par les vers de la grappe dans les vignobles, trouver un moyen de lutte efficace est devenu un réel challenge. A l’heure actuelle, la lutte biologique apparaît comme une alternative possible à la lutte chimique. Cependant, les résultats obtenus suite aux lâchers de parasitoïdes sont extrêmement variables dans leur efficacité. Des études approfondies de la biologie des vers de la grappe et de leurs parasitoïdes sont donc nécessaires afin d’affiner les méthodes de lutte biologique. Le système immunitaire des insectes représente la dernière ligne de défense des phytophages contre les parasitoïdes. Dans cette étude nous mett…

[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologycépage de vigneinteractions tri-trophiques[SDV.EE.IEO] Life Sciences [q-bio]/Ecology environment/Symbiosis[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology[SDE.BE] Environmental Sciences/Biodiversity and Ecology[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyimmunité des insectes[SDV.IMM.IA] Life Sciences [q-bio]/Immunology/Adaptive immunology[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/Symbiosis[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitologyparasitoïdes[SDE.BE]Environmental Sciences/Biodiversity and Ecologyvers de la grappe[SDV.MP.PAR] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Defense strategies used by two sympatric vineyard moth pests.

2014

8 pages; International audience; Natural enemies including parasitoids are the major biological cause of mortality among phytophagous insects. In response to parasitism, these insects have evolved a set of defenses to protect themselves, including behavioral, morphological, physiological and immunological barriers. According to life history theory, resources are partitioned to various functions including defense, implying trade-offs among defense mechanisms. In this study we characterized the relative investment in behavioral, physical and immunological defense systems in two sympatric species of Tortricidae (Eupoecilia ambiguella, Lobesia botrana) which are important grapevine moth pests. …

0106 biological sciencesTortricidae[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyHemocytesBehavioral defensePhysiologyBiological pest controlParasitismMothsLobesia botrana010603 evolutionary biology01 natural sciencesParasitoidHost-Parasite InteractionsHemolymphLobesia botrana[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsVitis[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyPhysical defenseEnzyme Precursors[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEupoecilia ambiguellabiologyBehavior AnimalEcologyfungibiology.organism_classification010602 entomologyNatural population growthEupoecilia ambiguellaSympatric speciationParasitismInsect ScienceLarvaFrance[SDE.BE]Environmental Sciences/Biodiversity and EcologyImmunological defenseCatechol Oxidase[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

How to improve grape moth pests control in viticulture. Which research fields should be promoted?

2017

National audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental SciencesComputingMilieux_MISCELLANEOUS
researchProduct

Immunocompetence increases with larval body size in a phytophagous moth

2013

Despite the obvious benefit of an immune system, its efficacy against pathogens and parasites may show great variation among individuals, populations and species. Understanding the causes of this variation is becoming a central theme in ecology. Many biotic and abiotic factors are known to influence immunocompetence (temperature, age, etc.). However, for a given age, size among individuals varies, probably as a result of accumulated resources. Thus, these variable resources could be allocated to immune defence and, consequently, body size may explain part of the variation in immune responsiveness. However, the influence of body size on immune defence is often overlooked. The present study i…

0106 biological sciencesPhysiologymedia_common.quotation_subjectInsectBody size010603 evolutionary biology01 natural sciences03 medical and health sciencesImmune systemImmunityEcology Evolution Behavior and Systematics030304 developmental biologymedia_commonAbiotic component0303 health sciencesLarvaEupoecilia ambiguellabiologyEcologyfungibiochemical phenomena metabolism and nutritionbiology.organism_classification13. Climate actionInsect SciencebacteriaImmunocompetencePhysiological Entomology
researchProduct

Food-mediated modulation of immunity in a phytophagous insect: An effect of nutrition rather than parasitic contamination.

2015

7 pages; International audience; Inherent to the cost of immunity, the immune system itself can exhibit tradeoffs between its arms. Phytophagous insects face a wide range of microbial and eukaryotic parasites, each activating different immune pathways that could compromise the activity of the others. Feeding larvae are primarily exposed to microbes, which growth is controlled by antibiotic secondary metabolites produced by the host plant. The resulting variation in abundance of microbes on plants is expected to differentially stimulate the insect antimicrobial immune defenses. Under the above tradeoff hypothesis, stimulation of the insect antimicrobial defenses is expected to compromise imm…

Immune tradeoffPhysiologymedicine.drug_classmedia_common.quotation_subjectAntibioticsZoologyInsectMothsImmune systemImmunityAntibioticsHemolymphBotanymedicine[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyAnimalsVitismedia_commonLarvaEnzyme PrecursorsEupoecilia ambiguellaGrape varietiesbiologyEffectorMonophenol MonooxygenasePlant ExtractsMicrobiotafungifood and beveragesTetracyclineAntimicrobialbiology.organism_classificationAnti-Bacterial AgentsEupoecilia ambiguellaInsect ScienceFruitLarva[SDV.IMM]Life Sciences [q-bio]/ImmunologyAnimal Nutritional Physiological PhenomenaCatechol OxidaseJournal of insect physiology
researchProduct

Host plant variation plastically impacts different traits of the immune system of a phytophagous insect

2011

Summary 1. Host plant quality affects herbivorous insect performance and consequently their susceptibility to natural enemies. Recently, it has been hypothesized that the immune function of herbivorous insects can be altered by their host plant, thus generating variation in their susceptibility to entomopathogens. Previous studies testing this hypothesis provided contradictory outcomes, mainly as a result of the differences in methodology such as measuring a single-immune parameter rather than considering trade-off-mediated interactions between immune defence systems of the insect. Here, we hypothesized that plant-mediated changes in insect immunity could result from the alteration of physi…

0106 biological sciencesmedia_common.quotation_subjectAntimicrobial peptidesZoologychemical and pharmacologic phenomenaInsectPlant disease resistance010603 evolutionary biology01 natural sciences03 medical and health sciencesImmune systemImmunityBotanyHemolymphEcology Evolution Behavior and Systematics030304 developmental biologymedia_common2. Zero hunger0303 health sciencesEupoecilia ambiguellabiologyfungiProphenoloxidasebiochemical phenomena metabolism and nutritionbiology.organism_classificationbacteriaFunctional Ecology
researchProduct

The relative abundance of hemocyte types in a polyphagous moth larva depends on diet.

2016

7 pages; International audience; Hemocytes are crucial cells of the insect immune system because of their involvement in multiple immune responses including coagulation, phagocytosis and encapsulation. There are various types of hemocytes, each having a particular role in immunity, such that variation in their relative abundance affects the outcome of the immune response. This study aims to characterize these various types of hemocytes in larvae of the grapevine pest insect Eupoecilia ambiguella, and to assess variation in their concentration as a function of larval diet and immune challenge. Four types of hemocytes were found in the hemolymph of 5th instar larvae: granulocytes, oenocytoids…

0301 basic medicineHemocytesPhysiologymedia_common.quotation_subjectHemocyte differentiationZoologyInsectMoths03 medical and health sciencesImmune systemImmunityBotanyHemolymphTortricidae[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyAnimalsVitisHemocyte differentiationmedia_commonLarva[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEupoecilia ambiguellaGrape varietiesbiologyEcological immunityfungibiochemical phenomena metabolism and nutritionbiology.organism_classificationAnimal FeedLepidoptera030104 developmental biologyEupoecilia ambiguellaInsect ScienceLarvaInstar[SDV.IMM]Life Sciences [q-bio]/ImmunologyAnimal Nutritional Physiological Phenomena[SDE.BE]Environmental Sciences/Biodiversity and EcologyGranulocytes
researchProduct

Should grape moth larval immunity help explaining resistance against natural enemies?

2011

National audience; In tritrophic systems (plants, phytophagous insects and natural enemies), host plant variation often keys the relative performance of both the herbivore and its associated natural enemies. In bottom-up effects, host plants could affect the fitness of phytophagous insects including growth rate and adult fertility. These effects are indirectly reflected in parasitoids whose success depends on their host quality. For instance, nutrient deficiency or/and toxic defensive compounds of the plants could slow-down the development of herbivorous insects, thus extending the window of vulnerability of attacks by natural enemies. The immune system is arguably the most common resistanc…

[SDE.BE] Environmental Sciences/Biodiversity and Ecology[SDV] Life Sciences [q-bio][ SDE.BE ] Environmental Sciences/Biodiversity and Ecology[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology[SDV]Life Sciences [q-bio]fungi[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/Symbiosis[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology[SDV.EE.IEO] Life Sciences [q-bio]/Ecology environment/Symbiosis[SDE.BE]Environmental Sciences/Biodiversity and Ecology[SDV.MP.PAR] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitologygrapevine grapevine moth insect immune system tritrophic interactions[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Condition-Dependent Trade-Off Between Weapon Size and Immunity in Males of the European Earwig

2017

Abstract Investigating the expression of trade-offs between key life-history functions is central to our understanding of how these functions evolved and are maintained. However, detecting trade-offs can be challenging due to variation in resource availability, which masks trade-offs at the population level. Here, we investigated in the European earwig Forficula auricularia whether (1) weapon size trades off with three key immune parameters – hemocyte concentration, phenoloxidase and prophenoloxidase activity - and whether (2) expression and strength of these trade-offs depend on male body condition (body size) and/or change after an immune challenge. Our results partially confirmed conditi…

MaleSex CharacteristicsHemocytesInsectaMonophenol Monooxygenase[SDV]Life Sciences [q-bio][SDV.BA]Life Sciences [q-bio]/Animal biologyScienceQImmunityRArticle570 Life sciences[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyAnimalsBody SizeInsect ProteinsMedicineLife History TraitsComputingMilieux_MISCELLANEOUS570 BiowissenschaftenScientific Reports
researchProduct

Effect of the host plant on the immunity of a phytophagous insect : influence of grape variety on the ability of the European grapevine moth to defen…

2013

In tritrophic interactions involving phytophagous insects, host plants and natural enemies, trophic levels are highly dependent on each other. Host plant may strongly affect directly phytophagous insect and indirectly natural enemies growing on these phytophagous insects. When a natural enemy attacks a phytophagous insect, the host immune system constitutes the last chance for the host to survive to an infection. A great variation of insect immune system is generally found in populations for susceptibility to pathogens, suggesting that variable selection pressures may have shaped and driven adaptation of immune traits. This project aims to determine the influence of both host plant and natu…

Succès de parasitismeGrape varietiesLocal immune selectionGrapevine mothImmune trade-offInteractions tri-trophiquesTordeuses de la vignePhenotypic plasticityAdaptation locale[SDE.BE] Environmental Sciences/Biodiversity and EcologyTritrophic interactionsCompromis immunitaireSystème immunitaire des insectesCépage de vigneSuccessful parasitismPlasticité phénotypiqueInsect immune system
researchProduct

Figure S1 from Offspring reverse transcriptome responses to maternal deprivation when reared with pathogens in an insect with facultative family life

2020

Genes affected by the presence of the pathogen, independently of maternal presence. Y-axis represents normalized expression across samples per gene (Z-Score).

researchProduct

Tables S1 & S2 from Offspring reverse transcriptome responses to maternal deprivation when reared with pathogens in an insect with facultative fa…

2020

Table S1. Comparisons of different transcriptome assemblies. The table on the sheet "Transrate output" shows data obtained using Transrate v.1.03 (Smith-unna et al., 2016). We compared assemblies created using Trinity and CLC Assembly Cell, as well as a merged "hybrid" obtained using CAP3 (Huang and Madan, 1999). The assembly comparison was used to determine the best assembly for continued analyses. Table S2. Full list of all DEGs revealed by the LRTs testing for main and interaction effects, as well as the associated annotations and read counts per sample. Note that no DEGs depended on maternal presence alone. Table headers are default DEseq2 headers, while the Blast annotation was added b…

researchProduct