0000000001318749

AUTHOR

Kris-emil Mose Jørgensen

showing 3 related works from this author

First measurements of field metabolic rate in wild juvenile fishes show strong thermal sensitivity but variations between sympatric ecotypes

2021

The relationship between physiology and temperature has a large influence on population-level responses to climate change. In natural settings, direct thermal effects on metabolism may be exaggerated or offset by behavioural responses influencing individual energy balance. Drawing on a newly developed proxy, we provide the first estimates of the thermal performance curve of field metabolism in a wild fish. We investigate the thermal sensitivity of field metabolic rate in two sympatric, genetically distinct ecotypes of Atlantic cod from the Skagerrak coast of southern Norway. The combined ecotype median of field metabolic rate increased with increasing temperature until around 16°C, coincide…

stable oxygen isotopeEcotypeZoologymetabolic rangeBiologystable carbon isotopemedicine.anatomical_structureotolithSympatric speciationField metabolic ratemedicineJuvenileSensitivity (control systems)Ecology Evolution Behavior and Systematicsphenotypic performanceOtolithOikos
researchProduct

Stable coexistence of genetically divergent Atlantic cod ecotypes at multiple spatial scales

2018

Abstract Coexistence in the same habitat of closely related yet genetically different populations is a phenomenon that challenges our understanding of local population structure and adaptation. Identifying the underlying mechanisms for such coexistence can yield new insight into adaptive evolution, diversification and the potential for organisms to adapt and persist in response to a changing environment. Recent studies have documented cryptic, sympatric populations of Atlantic cod (Gadus morhua) in coastal areas. We analysed genetic origin of 6,483 individual cod sampled annually over 14 years from 125 locations along the Norwegian Skagerrak coast and document stable coexistence of two gene…

0106 biological sciencesSympatryGENOMIC DIVERGENCECHROMOSOMAL REARRANGEMENTSBiodiversityecotypes010603 evolutionary biology01 natural sciencessympatry/dk/atira/pure/sustainabledevelopmentgoals/life_below_waterLOCAL ADAPTATIONGeneticsGadusPOPULATION-STRUCTURESDG 14 - Life Below Waterdispersaltemporal genetic stabilityGADUS-MORHUA L.MARINE FISHESEcology Evolution Behavior and SystematicsEcotypebiologyEcology010604 marine biology & hydrobiologynatural selectionGROWTH-RATEOriginal Articlesbiology.organism_classificationSTATIONARY ECOTYPESNATURAL-SELECTIONNORTH-SEAHabitatSympatric speciationAtlantic codconnectivityBiological dispersalOriginal ArticleGeneral Agricultural and Biological SciencesAtlantic cod
researchProduct

Data from: Stable coexistence of genetically divergent Atlantic cod ecotypes at multiple spatial scales

2018

Coexistence in the same habitat of closely related yet genetically different populations is a phenomenon that challenges our understanding of local population structure and adaptation. Identifying the underlying mechanisms for such coexistence can yield new insight into adaptive evolution, diversification, and the potential for organisms to adapt and persist in response to a changing environment. Recent studies have documented cryptic, sympatric populations of Atlantic cod (Gadus morhua) in coastal areas. We analyzed genetic origin of 6483 individual cod sampled annually over 14 years from 125 locations along the Norwegian Skagerrak coast and document stable coexistence of two genetically d…

medicine and health careMedicineNatural Selection and Contemporary EvolutionLife sciences
researchProduct