0000000001319894

AUTHOR

Andrei N. Khlobystov

showing 13 related works from this author

A Wavy Two-Dimensional Covalent Organic Framework from Core- Twisted Polycyclic Aromatic Hydrocarbons

2019

A high degree of crystallinity is an essential aspect in two-dimensional covalent organic frameworks, as many properties depend strongly on the structural arrangement of the different layers and their constituents. We introduce herein a new design strategy based on core-twisted polycyclic aromatic hydrocarbon as rigid nodes that give rise to a two-dimensional covalent organic framework with a wavy honeycomb (chairlike) lattice. The concave–convex self-complementarity of the wavy two-dimensional lattice guides the stacking of framework layers into a highly stable and ordered covalent organic framework that allows a full 3D analysis by transmission electron microscopy revealing its chairlike …

ChemistryStackingGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesCrystallinityColloid and Surface ChemistryPlanarChemical physicsCovalent bondLattice (order)HoneycombMesoporous materialCovalent organic framework
researchProduct

WS2/MoS2 Heterostructures via Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters

2020

The preparation of 2D stacked layers that combine flakes of different nature, gives rise to countless number of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides WS2/MoS2, has awaken great interest due to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S…

CouplingMaterials sciencePhotoluminescencebusiness.industryHeterojunctionThermal treatmentHomogeneous distribution7. Clean energylaw.inventionTransition metallawCluster (physics)OptoelectronicsCalcinationbusiness
researchProduct

π-Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons.

2021

Three-dimensional covalent organic frameworks (3D COFs) with a pcu topology have been obtained from distorted polycyclic aromatic hydrocarbons acting as triangular antiprismatic (D3d ) nodes. Such 3D COFs are six-fold interpenetrated as the result of interframework π-stacking, which enable charge transport properties that are not expected for 3D COFs.

CrystallographyMaterials science010405 organic chemistryCovalent bondCharge (physics)General ChemistryGeneral Medicine010402 general chemistry01 natural sciencesCatalysisTopology (chemistry)0104 chemical sciencesAngewandte Chemie (International ed. in English)
researchProduct

Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer.

2019

The integrated analytical approach developed in this study offers a powerful methodology for the structural characterisation of complex molecular nanomaterials. Structures of a covalent organic framework based on boronate esters (COF-5) and a conjugated microporous polymer (Aza-CMP) have been investigated by a combination of several electron microscopy techniques elucidating the three-dimensional topology of the complex polycrystalline (COF) and non-crystalline (CMP) materials. Unexpected, aperiodic mesoporous channels of 20-50 nm in diameter were found to be penetrating the COF and CMP particles, which cannot be detected by X-ray diffraction techniques. The mesopores appear to be stable un…

Materials sciencedesign02 engineering and technologyQuímica010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesConjugated microporous polymerNanomaterialsstorageChemical engineeringMoleculeGeneral Materials ScienceCrystalliteMaterials nanoestructurats0210 nano-technologyMesoporous materialNanoscopic scaleTopology (chemistry)Covalent organic frameworkNanoscale
researchProduct

WS 2 /MoS 2 Heterostructures through Thermal Treatment of MoS 2 Layers Electrostatically Functionalized with W 3 S 4 Molecular Clusters

2020

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2 /MoS2 , has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationi…

CouplingPhotoluminescence010405 organic chemistrybusiness.industryChemistryOrganic ChemistryHeterojunctionGeneral ChemistryThermal treatmentCondensed Matter::Mesoscopic Systems and Quantum Hall Effect010402 general chemistry01 natural sciences7. Clean energyHomogeneous distributionCatalysis0104 chemical scienceslaw.inventionCondensed Matter::Materials ScienceTransition metallawCluster (physics)OptoelectronicsCalcinationbusinessChemistry – A European Journal
researchProduct

Encapsulation of single-molecule magnets in carbon nanotubes

2011

Next-generation electronic, photonic or spintronic devices will be based on nanoscale functional units, such as quantum dots, isolated spin centres or single-molecule magnets. The key challenge is the coupling of the nanoscale units to the macroscopic world, which is essential for read and write purposes. Carbon nanotubes with one macroscopic and two nanoscopic dimensions provide an excellent means to achieve this coupling. Although the dimensions of nanotube internal cavities are suitable for hosting a wide range of different molecules, to our knowledge, no examples of molecular magnets inserted in nanotubes have been reported to date. Here we report the successful encapsulation of single-…

NanotubeMultidisciplinaryNanostructureMaterials scienceBiochemistry Genetics and Molecular Biology (all)Spintronicsbusiness.industryChemistry (all)General Physics and AstronomyNanotechnologyGeneral ChemistryCarbon nanotubeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGeneral Biochemistry Genetics and Molecular Biologylaw.inventionCondensed Matter::Materials SciencePhysics and Astronomy (all)lawQuantum dotMagnetPhotonicsbusinessNanoscopic scale
researchProduct

A Crystalline 1D Dynamic Covalent Polymer

2022

The synthesis of crystalline one-dimensional polymers provides a fundamental understanding about the structure??? property relationship in polymeric materials and allows the preparation of materials with enhanced thermal, mechanical, and conducting properties. However, the synthesis of crystalline one-dimensional polymers remains a challenge because polymers tend to adopt amorphous or semicrystalline phases. Herein, we report the synthesis of a crystalline one-dimensional polymer in solution by dynamic covalent chemistry. The structure of the polymer has been unambiguously confirmed by microcrystal electron diffraction that together with charge transport studies and theoretical calculations…

electronColloid and Surface ChemistrytransportGeneral Chemistryorganic frameworksBiochemistrysolid-stateCatalysisJournal of the American Chemical Society
researchProduct

An Expanded 2D Fused Aromatic Network with 90-Ring Hexagons

2022

[EN]Two-dimensional fused aromatic networks (2D FANs) have emerged as a highly versatile alternative to holey graphene. The synthesis of 2D FANs with increasingly larger lattice dimensions will enable new application perspectives. However, the synthesis of larger analogues is mostly limited by lack of appropriate monomers and methods. Herein, we describe the synthesis, characterisation and properties of an expanded 2D FAN with 90-ring hexagons, which exceed the largest 2D FAN lattices reported to date. This work was carried out with support from the Basque Science Foundation for Science (Ikerbasque),POLYMAT, the University of the Basque Country,Gobierno Vasco (BERC programme) and Gobierno d…

Materials scienceconjugated microporous polymerspolycyclic aromatic hydrocarbonsconjugated microporous polymer010402 general chemistryRing (chemistry)01 natural sciencesCatalysisConjugated microporous polymerlaw.inventionchemistry.chemical_compoundlawLattice (order)fused aromatic networksconjugated 2D polymerconjugated 2D polymers010405 organic chemistryGrapheneGeneral MedicineGeneral Chemistry0104 chemical sciencesMonomerchemistryChemical physicsfused aromatic network2D polymers2D polymer
researchProduct

Understanding charge transport in wavy 2D covalent organic frameworks

2021

Understanding charge transport in 2D covalent organic frameworks is crucial to increase their performance. Herein a new wavy 2D covalent organic framework has been designed, synthesized and studied to shine light on the structural factors that dominate charge transport.

Covalent bondChemical physicsChemistryGeneral Materials ScienceCharge (physics)02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesCovalent organic frameworkNanoscale
researchProduct

WS 2 /MoS 2 Heterostructures through Thermal Treatment of MoS 2 Layers Electrostatically Functionalized with W 3 S 4 Molecular Clusters

Chemistry – A European Journal
researchProduct

WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters

2020

The preparation of 2D stacked layers that combine flakes of different nature, gives rise to countless number of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides WS2/MoS2, has awaken great interest due to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S…

Condensed Matter::Materials ScienceSemiconductorsMetalls de transicióCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMaterials
researchProduct

CCDC 1885013: Experimental Crystal Structure Determination

2019

Related Article: Marta Martínez-Abadía, Craig T. Stoppiello, Karol Strutynski, Belén Lerma-Berlanga, Carlos Martí-Gastaldo, Akinori Saeki, Manuel Melle-Franco, Andrei N. Khlobystov, Aurelio Mateo-Alonso|2019|J.Am.Chem.Soc.|141|14403|doi:10.1021/jacs.9b07383

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2310111819-hexahydroxy-cata-hexabenzocoronene unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 2177984: Experimental Crystal Structure Determination

2022

Related Article: Elisabet De Bolòs, Marta Martínez-Abadía, Félix Hernández-Culebras, Alison Haymaker, Kyle Swain, Karol Strutyński, Benjamin L. Weare, Javier Castells-Gil□, Natalia M. Padial□, Carlos Martí-Gastaldo□, Andrei N. Khlobystov, Akinori Saeki, Manuel Melle-Franco, Brent L. Nannenga, Aurelio Mateo-Alonso△|2022|J.Am.Chem.Soc.|144|15443|doi:10.1021/jacs.2c06446

Space GroupCrystallographypoly-(44'-{211-di-t-butyl-7-[4-({[4-({[4-(prop-1-en-2-yl)phenyl]methylidene}amino)phenyl]imino}methyl)phenyl]quinoxalino[2'3':910]phenanthro[45-abc]phenazine-615-diyl}dibenzaldehyde)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct