0000000001320718

AUTHOR

Renate Lüllmann-rauch

showing 2 related works from this author

Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis

2019

CTSD (cathepsin D) is one of the major lysosomal proteases indispensable for the maintenance of cellular proteostasis by turning over substrates of endocytosis, phagocytosis and autophagy. Consequently, CTSD deficiency leads to a strong impairment of the lysosomal-autophagy machinery. In mice and humans CTSD dysfunction underlies the congenital variant (CLN10) of neuronal ceroid lipofuscinosis (NCL). NCLs are distinct lysosomal storage disorders (LSDs) sharing various hallmarks, namely accumulation of protein aggregates and ceroid lipofuscin leading to neurodegeneration and blindness. The most established and clinically approved approach to treat LSDs is enzyme replacement therapy (ERT) aim…

0301 basic medicineproteolysisCathepsin DCathepsin DCathepsin BstorageCathepsin L03 medical and health sciencesSequestosome 1Neuronal Ceroid-LipofuscinosesAutophagymedicineAnimalsHumansEnzyme Replacement TherapyeducationMolecular BiologyMice Knockouttherapyeducation.field_of_studyTripeptidyl-Peptidase 1030102 biochemistry & molecular biologybiologyAutophagy; cathepsin D; enzyme replacement therapy; lysosome; neuronal ceroid lipofuscinosis; proteolysis; storage; therapyBrainCell BiologyFibroblastsTripeptidyl peptidase Imedicine.diseaseLRP1Cell biologyDisease Models Animal030104 developmental biologylysosomebiology.proteinAllograft inflammatory factor 1Neuronal ceroid lipofuscinosisneuronal ceroid lipofuscinosisLysosomesResearch PaperAutophagy
researchProduct

Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis

2019

CTSD (cathepsin D) is one of the major lysosomal proteases indispensable for the maintenance of cellular proteostasis by turning over substrates of endocytosis, phagocytosis and autophagy. Consequently, CTSD deficiency leads to a strong impairment of the lysosomal-autophagy machinery. In mice and humans CTSD dysfunction underlies the congenital variant (CLN10) of neuronal ceroid lipofuscinosis (NCL). NCLs are distinct lysosomal storage disorders (LSDs) sharing various hallmarks, namely accumulation of protein aggregates and ceroid lipofuscin leading to neurodegeneration and blindness. The most established and clinically approved approach to treat LSDs is enzyme replacement therapy (ERT) aim…

researchProduct