0000000001320773

AUTHOR

Liqin Cao

Face Inpainting via Nested Generative Adversarial Networks

Face inpainting aims to repaired damaged images caused by occlusion or cover. In recent years, deep learning based approaches have shown promising results for the challenging task of image inpainting. However, there are still limitation in reconstructing reasonable structures because of over-smoothed and/or blurred results. The distorted structures or blurred textures are inconsistent with surrounding areas and require further post-processing to blend the results. In this paper, we present a novel generative model-based approach, which consisted by nested two Generative Adversarial Networks (GAN), the sub-confrontation GAN in generator and parent-confrontation GAN. The sub-confrontation GAN…

research product

Image Colorization Method Using Texture Descriptors and ISLIC Segmentation

We present a new colorization method to assign color to a grayscale image based on a reference color image using texture descriptors and Improved Simple Linear Iterative Clustering (ISLIC). Firstly, the pixels of images are classified using Support Vector Machine (SVM) according to texture descriptors, mean luminance, entropy, homogeneity, correlation, and local binary pattern (LBP) features. Then, the grayscale image and the color image are segmented into superpixels, which are obtained by ISLIC to produce more uniform and regularly shaped superpixels than those obtained by SLIC, and the classified images are further post-processed combined with superpixles for removing erroneous classific…

research product

A Student's t‐based density peaks clustering with superpixel segmentation (tDPCSS) method for image color clustering

research product

Directive local color transfer based on dynamic look-up table

Abstract Color transfer in image processing usually suffers from misleading color mapping and loss of details. This paper presents a novel directive local color transfer method based on dynamic look-up table (D-DLT) to solve these problems in two steps. First, a directive mapping between the source and the reference image is established based on the salient detection and the color clusters to obtain directive color transfer intention. Then, dynamic look-up tables are created according to the color clusters to preserve the details, which can suppress pseudo contours and avoid detail loss. Subjective and objective assessments are presented to verify the feasibility and the availability of the…

research product

Data for: Directive local color transfer based on dynamic look-up table

This data is the image in the article. THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOVE

research product