0000000001320838

AUTHOR

Danilo Scuderi

showing 2 related works from this author

Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans

2015

Excessive CO 2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO 2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to parti…

Extinction eventBIOMETRIENANISMEEcologyEcology (disciplines)COQUILLAGEINVERTEBRE AQUATIQUEBiologyEnvironmental Science (miscellaneous)CALCAIREDwarfingOceanographyCLIMATMETABOLISMECHANGEMENT CLIMATIQUEMILIEU MARINSeawaterGAZ CARBONIQUEsense organsADAPTATIONskin and connective tissue diseasesSocial Sciences (miscellaneous)ACIDIFICATION
researchProduct

Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans

2015

Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partial…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationSalinityTemperateBicarbonate ion standard deviationBottles or small containers/Aquaria (<20 L)Alkalinity total standard deviationinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedWidthCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenAlkalinity totalBottles or small containers Aquaria 20 LtotalCO2 ventpHRespirationCalcification rate of calcium carbonateTemperatureMonthdissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Temperature water standard deviationRespiration rateEarth System ResearchField observationstandard deviationThicknessCalcification/DissolutionPotentiometric titrationCalcite saturation statePotentiometricwaterPartial pressure of carbon dioxideSiteGrowth MorphologyFigureAragonite saturation state standard deviationBenthosMediterranean SeaOcean Acidification International Coordination Centre OA ICCCalcite saturation state standard deviationAnimaliaBicarbonate ionLONGITUDECalculated using seacarb after Nisumaa et al. (2010)SpeciesCyclope neriteaBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSHeightPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationCarbonate ion standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonHeight/width ratioTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologySingle speciesCalcification DissolutionLATITUDEHeight width ratioBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfNassarius corniculusoxygenTable
researchProduct