0000000001321374

AUTHOR

S. Puccetti

showing 3 related works from this author

Localisation of gamma-ray bursts from the combined SpIRIT+HERMES-TP/SP nano-satellite constellation

2023

Multi-messenger observations of the transient sky to detect cosmic explosions and counterparts of gravitational wave mergers critically rely on orbiting wide-FoV telescopes to cover the wide range of wavelengths where atmospheric absorption and emission limit the use of ground facilities. Thanks to continuing technological improvements, miniaturised space instruments operating as distributed-aperture constellations are offering new capabilities for the study of high energy transients to complement ageing existing satellites. In this paper we characterise the performance of the upcoming joint SpIRIT + HERMES-TP/SP nano-satellite constellation for the localisation of high-energy transients th…

Gamma ray transient sourceHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceX-ray transient sourceSpace telescopeTime domain astronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

The NHXM observatory

2011

Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…

Black-holesAcceleration mechanismCosmic Visionmedia_common.quotation_subjectPolarimetry7. Clean energy01 natural sciencesMissionsCosmologyPhysical cosmologyNon-thermal emissionAcceleration mechanism; Accretion physics; Black-holes; Compact objects; Cosmology; Missions; Non-thermal emission; X-ray imaging; X-ray polarimetry; Astronomy and Astrophysics; Space and Planetary ScienceObservatory0103 physical sciencesBroadbandX-ray polarimetry010303 astronomy & astrophysicsCompact objectsmedia_commonPhysics010308 nuclear & particles physicsX-ray imagingVegaAstronomyAstronomy and AstrophysicsAccretion physicsCosmologySkySpace and Planetary ScienceExperimental Astronomy
researchProduct

XMM-Newton survey of the ELAIS-S1 field

2008

The formation and evolution of cosmic structures can be probed by studying the evolution of the luminosity function of the Active Galactic Nuclei (AGNs), galaxies and clusters of galaxies and of the clustering of the X-ray active Universe, compared to the IR-UV active Universe. To this purpose, we have surveyed with XMM-Newton the central ~0.6{deg}^2^ region of the ELAIS-S1 field down to flux limits of ~5.5x10^-16^erg/cm^2^/s (0.5-2keV, soft band, S), ~2x10^-15^erg/cm^2^/s (2-10keV, hard band, H), and ~4x10^-15^erg/cm^2^/s (5-10keV, ultra hard band, HH). We present here the analysis of the XMM-Newton observations, the number counts in different energy bands and the clustering properties of …

Active galactic nucleigalactic and extragalactic astronomyAstrophysics and Astronomyhigh energy astrophysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Instrumentation and Methods for AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSurveysX-ray sourcesCosmologyobservational astronomyX ray sourcesNatural SciencesAstrophysics::Galaxy Astrophysics
researchProduct