0000000001323140

AUTHOR

V. Adibekyan

showing 4 related works from this author

The Gaia-ESO Survey: The origin and evolution of s-process elements

2018

Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO IDR5 results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the ave…

astro-ph.GAMetallicityFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: diskAstronomi astrofysik och kosmologiAbundance (ecology)QB4600103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar AstrophysicsDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsgeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsOpen clusters and associations: generalAstrophysics - Astrophysics of GalaxiesStarsAbundances [Galaxy][SDU]Sciences of the Universe [physics]13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy: abundancesAstrophysics::Earth and Planetary AstrophysicsDisk [Galaxy]s-processOpen cluster
researchProduct

The Gaia-ESO survey: Metallicity of the chamaeleon i star-forming region

2014

Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star-forming region, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. 48 candidate member…

AstrofísicaStars: abundanceMetallicityFOS: Physical sciencesTechniques: spectroscopicContext (language use)AstrophysicsOpen clusters and associations: individual: Chamaeleon ISolar and Stellar Astrophysics (astro-ph.SR)Line (formation)Physics85A04open clusters and associations: individual: Chamaeleon I stars: pre-main sequence stars: abundances techniques: spectroscopicStars: abundancesAstronomy and AstrophysicsSurface gravityAstronomíaStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceChamaeleonStars: pre-main sequenceOpen clusters and associations: individual: Chamaeleon I; Stars: abundances; Stars: pre-main sequence; Techniques: spectroscopicindividual: Chamaeleon I stars: pre-main sequence stars: abundances techniques: spectroscopic [open clusters and associations]Equivalent widthOpen cluster
researchProduct

The Gaia-ESO Survey: evidence of atomic diffusion in M67?

2018

Investigating the chemical homogeneity of stars born from the same molecular cloud at virtually the same time is very important for our understanding of the chemical enrichment of the interstellar medium and with it the chemical evolution of the Galaxy. One major cause of inhomogeneities in the abundances of open clusters is stellar evolution of the cluster members. In this work, we investigate variations in the surface chemical composition of member stars of the old open clusterM67 as a possible consequence of atomic diffusion effects taking place during the main-sequence phase. The abundances used are obtained from high-resolution UVES/FLAMES spectra within the framework of the Gaia-ESO S…

astro-ph.SRstars: abundancesastro-ph.GAMetallicityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesevolution [Galaxy]Astronomi astrofysik och kosmologi0103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar Astrophysicsstars: evolution010303 astronomy & astrophysicsStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsGalaxy: evolution010308 nuclear & particles physicsSubgiantMolecular cloudGalaxy: Abundanceabundances [Galaxy]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxyInterstellar mediumStars: Abundanceabundances [stars]StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)evolution [stars]Galaxy: Abundances; Galaxy: Evolution; Stars: Abundances; Stars: Evolution; Astronomy and Astrophysics; Space and Planetary ScienceGalaxy: abundancesAstrophysics::Earth and Planetary AstrophysicsOpen cluster
researchProduct

ESPRESSO radial velocities of HE0107-5240

2020

The vast majority of the known stars of ultra low metallicity ([Fe/H]<-4.5) are known to be enhanced in carbon, and belong to the 'low-carbon band' (A(C)=log(C/H)+12~7.6). It is generally, although not universally, accepted that this peculiar chemical composition reflects the chemical composition of the gas cloud out of which these stars were formed. The first ultra-metal-poor star discovered, HE 0107-5240, is also enhanced in carbon and belongs to the 'low-carbon band'. It has recently been claimed to be a long-period binary, based on radial velocity measurements. It has also been claimed that this binarity may explain its peculiar composition as being due to mass transfer to a former AGB …

observational astronomyRadial velocityAstrophysics and AstronomyExoplanet AstronomyStellar AstronomyPhysicsGiant starsAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsNatural SciencesAstrophysics::Galaxy Astrophysics
researchProduct