0000000001324104

AUTHOR

Susanna Narkilahti

showing 4 related works from this author

Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold

2022

Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin…

hyaluronaaniindusoidut monikykyiset kantasolutInduced Pluripotent Stem CellsBiomedical Engineeringkudosviljelybiomimeettiset materiaalitBiochemistryBiomaterialsbrain-mimetic hydrogel scaffoldBiomimeticshyaluronic acidAnimalsHumanshuman pluripotent stem cellsMolecular Biologychondroitin sulfateNeuronsdopamiini318 Medical biotechnologyTissue ScaffoldsBrainhermoverkot (biologia)General MedicineExtracellular Matrixhermosolut3111 Biomedicineneuronal networkdopamineBiotechnology
researchProduct

Human Pluripotent Stem Cell-Derived Neuronal Networks:Their Electrical Functionality and Usability for Modelling and Toxicology

2011

Micro electrode array (MEA)-based platforms have been used to study neuronal networks for decades. The used cells have, for the most part, been rodent primary neurons. The gained knowledge has indeed increased the understanding of neuronal network development and maturation both in vitro and in vivo. If aiming to understand the development of human brain, however, the used cell type should preferably be of human origin due to difficult interpolation from the rodent cell data. In addition, the development of functional human neuronal networks would open up a new era for, e.g., toxicology testing, drug screening and disease modelling. The use of MEA with bioelectrically active cells was first…

0303 health sciencesCell typeCellHuman brainBiologyEmbryonic stem cellIn vitroToxicology03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureCell culturemedicineBiological neural networkInduced pluripotent stem cellNeuroscience030217 neurology & neurosurgery030304 developmental biology
researchProduct

GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks.

2017

The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide…

0301 basic medicineBiolääketieteet - Biomedicineneural networkstem cell derived neuronslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCalcium imagingPremovement neuronal activityhuman pluripotent stem cellsInduced pluripotent stem celllcsh:Neurosciences. Biological psychiatry. Neuropsychiatrygap junctionsOriginal ResearchArtificial neural networkGABAA receptorChemistrymicroelectrode arrayGap junctionsynchronyDepolarizationMultielectrode arraycalcium imaging030104 developmental biologynervous systemexcitatory GABANeuroscienceNeurotieteet - Neurosciences030217 neurology & neurosurgeryNeuroscienceFrontiers in cellular neuroscience
researchProduct

Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

2012

In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing …

purskeanalyysispike trainsQuantitative Biology::Neurons and CognitiontoimintapotentiaalipurskeetMEAmicroelectrode arrayaction potential burstsdeveloping neuronal networksihmisalkion kantasoluhuman embryonic stem cellssoluttoimintapotentiaaliryhmätnervous systemhESCsmikroelektordihilakehittyvät hermoverkotburst analysis
researchProduct