0000000001325752

AUTHOR

Nicolas Schunck

showing 10 related works from this author

Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.

2012

We describe the new version (v2.38j) of the code hfodd which solves the nuclear SkyrmeHartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for statedependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the D T transformations and rotations of wave functio…

PhysicsAngular momentumHardware and ArchitecturePairingQuantum mechanicsNuclear TheoryHartree–Fock methodGeneral Physics and AstronomyBroyden's methodWave functionMultipole expansionYukawa interactionHarmonic oscillatorComputer Physics Communications
researchProduct

Nuclear Energy Density Optimization: UNEDF2

2014

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

Physics[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th]skyrme energy densityNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]ta114nuclear density functional theoryNuclear TheoryFOS: Physical sciencesLibrary scienceOak Ridge National Laboratory7. Clean energyNuclear Theory (nucl-th)Nuclear physicsEnergy densityNational laboratoryComputer Science::Operating SystemsNuclear theory
researchProduct

Nuclear energy density optimization: Shell structure

2013

Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose c…

PhysicsDensity matrixNuclear and High Energy PhysicsWork (thermodynamics)ta114Nuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]010308 nuclear & particles physicsOrbital-free density functional theoryBinding energyNuclear TheoryFOS: Physical sciences01 natural sciencesComputational physicsNuclear physicsNuclear Theory (nucl-th)0103 physical sciencesTensor010306 general physicsParametrizationOpen shellNuclear density
researchProduct

Computational nuclear quantum many-body problem: The UNEDF project

2013

The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF scien…

Energy density functionalNuclear Theoryta114Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyComputerApplications_COMPUTERSINOTHERSYSTEMSSupercomputerNuclear Theory (nucl-th)Many-body problemRange (mathematics)Hardware and ArchitectureSystems engineeringStatistical physicsUncertainty quantificationQuantumNuclear theoryComputer Physics Communications
researchProduct

Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of …

2017

We describe the new version (v2.73y) of the code HFODD which solves the nuclear Skyrme Hartree-Fock or Skyrme Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton-neutron mixing in the particle-hole channel for Skyrme functionals, (ii) the Gogny force in both particle-hole and particle-particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb ene…

Angular momentumNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]SYMMETRYNuclear TheoryHartree–Fock methodGeneral Physics and AstronomyFOS: Physical sciencesGogny forceSkyrme interactionNuclear density functional theorySelf-consistent mean-field01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)Energy density functional theorySYSTEMSQuantum mechanics0103 physical sciences010306 general physicsHarmonic oscillator[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]PhysicsHartree–Fock–Bogolyubovta114010308 nuclear & particles physicsAugmented Lagrangian methodInteraction energyAngular-momentum projection113 Computer and information sciencesHardware and ArchitecturePairingIsospintheoretical nuclear physicsSelf-consistent mean fieldHartree-Fock-BogolyubovPairing correlations
researchProduct

One-quasiparticle States in the Nuclear Energy Density Functional Theory

2009

We study one-quasiproton excitations in the rare-earth region in the framework of the nuclear Density Functional Theory in the Skyrme-Hartree-Fock-Bogoliubov variant. The blocking prescription is implemented exactly, with the time-odd mean field fully taken into account. The equal filling approximation is compared with the exact blocking procedure. We show that both procedures are strictly equivalent when the time-odd channel is neglected, and discuss how nuclear alignment properties affect the time-odd fields. The impact of time-odd fields on calculated one-quasiproton bandhead energies is found to be rather small, of the order of 100-200 keV; hence, the equal filling approximation is suff…

PhysicsNuclear and High Energy PhysicsNuclear TheoryEnergy density functionalNuclear TheoryFOS: Physical sciencesNuclear matterPolarization (waves)Nuclear Theory (nucl-th)Mean field theoryQuantum mechanicsQuantum electrodynamicsQuasiparticleFunctional theoryNuclear theoryNuclear density
researchProduct

Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: a new v…

2012

We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic-oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (E…

Physicsta114Nuclear TheoryNuclear TheoryHartree–Fock methodGeneral Physics and AstronomyFOS: Physical sciencesBroyden's methodNuclear Theory (nucl-th)Reflection symmetryShared memoryHardware and ArchitectureQuantum mechanicsAxial symmetryRandom phase approximationAxial multipole momentsHarmonic oscillator
researchProduct

Sensitive search for near-symmetric and super-asymmetric fusion-fission of the superheavy element Flerovium (Z=114)

2021

Physics letters / B 820, 136601 (2021). doi:10.1016/j.physletb.2021.136601

PhysicsNuclear and High Energy PhysicsFusionComponent (thermodynamics)FissionProjectilePhysicsQC1-999chemistry.chemical_elementIsotopes of flerovium530FleroviumSuperheavy elementchemistryNuclear fission dynamicsYield (chemistry)Mass spectrumddc:530Atomic physicsNuclear ExperimentMicroscopic model calculations
researchProduct

FRIB and the GW170817 Kilonova

2018

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)Astrophysics - Solar and Stellar AstrophysicsNuclear TheoryFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

FRIB and the GW170817 Kilonova

2018

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)FOS: Physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct