0000000001327573
AUTHOR
Rosalinda Inguanta
Apparato e metodo per il recupero di rame a partire da scarti di dispositivi elettrici ed elettronici
Il brevetto riguarda un metodo ed il relativo dispositivo per il recupero di rame metallico puto da RAEE
Nanostructures of Lanthanide Oxy/Hydroxides Obtained by Metal Displacement Deposition
PVA-based acidic hydrogel electrolyte
Study of a Novel Electrochemical Method for Copper Recovery from Waste Printed Circuit Boards
This study was carried out to recover copper from printed circuit boards of waste computers through an electrochemical process. To simplify the overall recovery process, large pieces of printed circuit boards were used instead of pulverized samples. In particular, these large pieces were directly used as an anode for copper electrorefining. For this purpose, electronic components and solder mask were initially removed from the boards. The electronic components can be treated separately to recover precious metals using various methods. The removal of solder mask was necessary to expose copper layers to the electrolytic solution and it was removed by a chemical treatment with sodium hydroxide…
Fabrication of Nanostructured Ni and Ni-Pd electrodes for wateralkaline electrolyzer
In the last years many attention has been dedicated to the increase of performance of Nichel based electrodes to use in water-alkaline electrolyzes. In our preliminary work we have shown that alkaline electrolyzer made with Ni nanowires covered with IrO2 (side oxygen evolution) nanoparticles and a Ni sheet (side hydrogen evolution) have very good and stable performance also at room temperature [1]. In this work, to obtain a complete nanostructured electrolyzer, the attention was focused on the fabrication of electrodes for hydrogen evolution. In particular, by metal displacement deposition we have grown on Ni nanowires electrodes, nanoparticles of Pd with the aim to enhance the electrocatal…
ELECTROCHEMICAL PREPARATION OF CERIUM OXIDE NANOSTRUCTURES
Growth and photoelectrochemical behavior of electrodeposited ZnO thin films for solar cells
Electrodeposition and Photo-electrochemical behaviour of CIGS Thin Films and Nanowires arrays for Solar Cell
Nanostructures Fabrication by Template Deposition in Anodic Alumina Membranes
Copper nanowires as higly sensitivite electrode for nitrate ions in water
Agricultural and livestock sectors are the main sources of nitrate ions contamination in water and foodstuff. [1]. High nitrate concentration is dangerous for both environment (algae overgrowth) and human health. Nitrate ions can be converted in different harmful nitrogen based compound such as NO2-, NO, N-nitroso compounds [2] that are responsible of several diseases such as cancer, Parkinson [3-4]. For these reasons, the Environmental Protection Agency, has established the maximum amount of nitrate ions in drinkable water at 44 mg/l, limit that is valid in many European countries [5]. Generally, spectroscopy techniques are the most used because allow to carry out analyses with high precis…
Elettrodeposizione di leghe nanostrutturate a base di stagno
Naporous alumina membranes grown electrochemically: fabrication and modification by metal deposition
Ultrafast lead-acid battery with nanostructured Pb and PbO2 electrodes
Lead-acid batteries (LABs) are still extensively used in the field of energy storage, owing to a well-known and reliable technology. LABs can deliver high power and store energy for a very long time. In addition, they are reliable and easy to produce. The raw materials for their manufacture are practically unlimited, and about 95% of the materials can be recovered and reused. However, the lower specific energy storage (about 30-40 Wh kg-1), in comparison with other storage systems, limits their use in the most emerging and challenging applications, like electrical mobility, due to the high atomic weight of lead [1]. One of the principal limitations in the use of LABs in electric vehicles (E…
Co-Deposition and Characterization of Hydroxyapatite-Chitosan and Hydroxyapatite-Polyvinylacetate Coatings on 304 SS for Biomedical Devices
During the last decades, biomaterials have been deeply studied to perform and improve coatings for biomedical devices. Metallic materials, especially in the orthopedic field, represent the most common material used for different type of devices thanks to their good mechanical properties. Nevertheless, low/medium resistance to corrosion and low osteointegration ability characterizes these materials. To overcome these problems, the use of biocoatings on metals substrate is largely diffused. In fact, biocoatings have a key role to confer biocompatibility properties, to inhibit corrosion and thus improve the lifetime of implanted devices. In this work, the attention was focused on Hydroxyapatit…
Calcium phosphate/polyvinyl acetate coatings on SS304 via galvanic co-deposition for orthopedic implant applications
Abstract In this work, the galvanic deposition method is used to deposit coatings of brushite/hydroxyapatite/polyvinyl acetate on 304 stainless steel. Coatings are obtained at different temperatures and with different sacrificial anodes, consisting of a mixture of brushite and hydroxyapatite. Samples are aged in a simulated body fluid (SBF), where a complete conversion of brushite into hydroxyapatite with a simultaneous change in morphology and wettability occurred. The corrosion tests show that, compared with bare 304, the coating shifts Ecorr to anodic values and reduces icorr Ecorr, and icorr has different values at different aging times due to chemical interactions at the solid/liquid i…
Preparation of Pd coated anodic alumina membranes for gas separation media
Different procedures of Pd electroless deposition onto anodic alumina membranes were investigated to form a dense metal layer covering pores. The main difficulty was related to the amorphous nature of anodic alumina membranes, determining low chemical stability in solutions at pH > 9, where Pd plating works more efficiently. As a consequence, it was necessary to find the operative conditions allowing Pd deposition without damaging the membrane: to reduce alumina dissolution, the plating bath was buffered at pH 8.5 by addition of either NaHCO 3 or Na 2 B 4 O 7 ·H 2 O. Acceptable conversion of Pd was found after a deposition time of 3 min. Single and multiple deposition steps (each lasting 3 …
Ni alloy nanowires for alkaline electrolysers
In recent years, the interest towards green hydrogen has drastically increased due to the global decarbonization process. Green hydrogen is obtained by water electrolysis using only electricity from renewable sources. It is considered one of the best storage systems in terms of environmental sustainability but not in economic ones. Nowadays, the research is focused on improving the Alkaline Water Electrolysis (AE) to reduce the cost of production. An approach to improve AE performance is based on nanostructured electrodes characterized by high electrocatalytic activity due to the very high surface area. In fact, the development of more efficient electrolysers with low-cost electrode-electro…
Electrodeposition and Caracterization of Nanostructured Ni and Ni-IrO2
Reduced graphene oxide decorated with metals nanoparticles electrode as electrochemical sensor for dopamine
Dopamine (DA) is one of the most important neurotransmitters that influences the processes that involve memory, sleep, mood, learning among others [1]. In fact, in the last years, dopamine concentration in human body fluids has been related to some neurodegenerative diseases, such as Parkinson and Alzheimer's diseases [2]. The possibility to have a bio-marker for these disease is of extreme importance because, disease related with dementia, are diagnosed when they are already developed and their management become almost impossible. The possibility to continuously monitor DA level in fluids, such as blood and urine, could accelerate the early diagnosis of these diseases. The principal analyt…
Characterization of Sn-Co nanowires grown into alumina template
Nanowires of Sn-Co alloys were grown inside the channels of anodic alumina membrane by potentiostatic deposition. The scanning electron microscope images showed the formation of cylindrical nanowires whose height was increasing with deposition time. The X-ray patterns did not show significant diffraction peaks, suggesting the formation of amorphous phases. The higher content of Co in the nanowires, in comparison to the initial composition of the electrolytic bath, was attributed to a higher rate of Co electrodeposition. These nanowires seem to possess specific features suitable for innovative application in the field of Li-ion batteries due to their dimensional stability and high specific s…
ELECTROCHEMICAL H2O2 SENSORS BASED ON Pd and Cu NANOSTRUCUTERS
In the last decades, with the fast improvement of electronics, the field of sensors is highly expanding. The basic idea of sensors is to detect something and then trigger a corresponding action. This simple, but very important, concept can be used in different fields: from chemical industries to farms, from the environmental monitoring [1] to a point of care analysis [2]. Currently, talking about sensing of chemical species, different techniques are used, such as Atomic Absorption Spectroscopy (AAS), Graphite Furnace Atomic Absorption Spectroscopy (GFAAS), Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), IR spectroscopy, redox titration and so on. Despite they are highly efficient in …
Electrodeposition and ILGAR process to obtain Ni-In2S3 core-shell nanowires
NANOSTRUCTURED ANODE MATERIAL FOR Li-ION BATTERY OBTAINED BY GALVANIC PROCESS
The accumulation of energy by batteries plays a fundamental role for the production of electrical energy and for its efficient management. Between different storage systems the lithium-ion battery are considered very interesting. Although they are now a well-established commercial reality, they are still subject of vigorous research efforts, in order to make improvements primarily in terms of costs, safety and energy density. The latter is in fact still low compared to that of fossil fuels, if you think to the automotive field. In particular efforts are focused towards the identification of valid alternatives to the electrode materials so as to overcome the limitations and extend the use of…
Template electrosynthesis of aligned Cu2O nanowires Part I. Fabrication and characterization
Large arrays of aligned copper oxide nanowires were produced by electrodeposition, using anodic alumina membranes as template. We have studied the effect of two fundamental parameters involved in fabrication process: potential perturbation and bath composition. Performing electrodeposition from a copper acetate/sodium acetate bath (pH 6.5), we found that chemical composition of nanowires varied in dependence on the shape of the applied potential perturbation: pure copper oxide nanowires were produced by pulsed potential, whilst continuous electrodeposition resulted in a co-deposition of Cu and Cu2O. In a copper lactate bath, buffered at pH 10, the shape of perturbation did not influence the…
Nanostructured Based Electrochemical Sensors.
In this work, we present some results concerning the electrochemical behavior of nanostructured-based electrochemical sensors. In particular, the attention has been focused on Pd and Cu nanowires for detection of hydrogen peroxide and NiO thin film or Ni@NiO core–shell nanowires for detection of mercury ions. Ordered array of Pd and Cu nanowires was obtained through displacement deposition reaction in a commercial polycarbonate membrane acting as a template. The method leads to stable nanostructured electrodes of Pd and Cu with high surface area. For the detection of mercury ions, we have fabricated a Ni/NiO electrochemical sensor, obtained by mild thermal oxidation of Ni-foil. Some results…
CaP-Bioglass composite coating by galvanic deposition
Orthopedic devices are increasingly used in our life to improve the health of patients after bone fractures due to accidents, aging, or sports injuries. Metallic materials (i.e. stainless steel, titanium alloys chromium alloys) are widely employed to fabricate prostheses, screws, and osteosynthesis plates. Although metals could be good mechanical properties like human bone, corrosion phenomena could occur, causing in the worst cases the failure of orthopedic implants. In addition, metal ions released around periprosthetic tissues could arise allergenic and cancerogenic effects. Nowadays, the research was focused on coating science to deal with these issues. In particular, the development of…
Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer
Abstract Over the last decade, as a consequence of the global decarbonization process, the interest towards green hydrogen production has drastically increased. In particular a substantial research effort has focused on the efficient and affordable production of carbon-free hydrogen production processes. In this context, the development of more efficient electrolyzers with low-cost electrode/electrocatalyst materials can play a key role. This work, investigates the fabrication of electrodes of nickel-zinc alloys with nanowires morphology cathode for alkaline electrolyzers. Electrodes are obtained by the simple method of template electrosynthesis that is also inexpensive and easily scalable.…
Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer
Abstract Ni–Co alloy nanostructured electrodes with high surface area were investigated both as a cathode and anode for an alkaline electrolyzer. Electrodes were obtained by template electrosynthesis at room temperature. The electrolyte composition was tuned in order to obtain different NiCo alloys. The chemical and morphological features of nanostructured electrodes were evaluated by EDS, XRD and SEM analyses. Results show that electrodes with different composition of Ni and Co, made of nanowires well anchored to the substrate, were obtained. For both hydrogen and oxygen evolution reactions, electrochemical and electrocatalytic tests, performed in 30% w/w KOH aqueous solution, were carried…
Investigation of electrodeposited ZnO thin films as transparent conducting oxide for application in CIGS-based solar cells
Synthesis and characterization of nanostructured materials applied to energy devices
Deposition of very thin uniform indium sulfide layers over metallic nano-rods by the Spray-Ion Layer Gas Reaction method
Abstract Very thin and uniform layers of indium sulfide were deposited on nickel nano-rods using the sequential and cyclical Spray-ILGAR® (Ion Layer Gas Reaction) technique. Substrates were fabricated by electrodeposition of Ni within the pores of polycarbonate membranes and subsequent chemical dissolution of the template. With respect to the depositions on flat substrates, experimental conditions were modified and optimized for the present geometry. Our results show that nano-rods up to a length of 10 μm were covered uniformly along their full length and with an almost constant film growth rate, thus allowing a good control of the coating thickness; the effect of the deposition temperature…
Synthesis and Characterization of Nanostructured Electrodes for Innovative Lead Acid Batteries
In vitro corrosion and biocompatibility of brushite/hydroxyapatite coatings obtained by galvanic deposition on 316LSS
Corrosion behavior and cytotoxicity was reported for mixed brushite (BS)/hydroxyapatite (HA) coatings deposited on 316LSS substrate through a displacement reaction. Corrosion tests, carried out in a simulated body fluid, showed that in comparison with bare 316L, coating shifts Ecorrto anodic values and reduces icorreven if oscillations were observed, which were explained in terms of the chemical interactions at the solid/liquid interface. Cell biocompatibility of the coating was investigated through osteoblastic cell line MC3T3-E1, evidencing the absence of any cytotoxicity Taken together, the results show that galvanic deposition is a simple and cost-effective method for producing bioactiv…
Electrochemical Fabrication of Sn-Co Nanowires in Anodic Alumina Templates
Electrochemical deposition of CZTS thin films on flexible substrate
Solar cells based on semiconductor thin films are emerging as alternative to silicon;however,the materials giving the highest efficiency,CdTe and CuInGaSe,contain toxic (Cd) and rare (In) elements.In this field,the challenge is to substitute In and Cd with abundant and non-toxic elements without lowering the high efficiency achieved with these technologies.Compounds based on copper,zinc,tin and sulfur (CZTS) are potentially promising materials,because they present all the above listed features.Among the different methods to obtain CZTS,the electrochemical route appears of great interest because easy to conduct.Up to date,the literature shows that non-uniformity in composition and/or the pre…
Controlled solution-based fabrication of perovskite thin films directly on conductive substrate
Abstract Organometallic perovskites are one of the most investigated materials for high-efficiency thin-film devices to convert solar energy and supply energy. In particular, methylammonium lead iodide has been used to realize thin-film perovskite solar cells, achieving an efficiency higher than 20%. Different fabrication procedures based on the spin-coating technique have been proposed, which do not ensure homogenous morphologies. In this work, we present a scalable process to fabricate methylammonium lead iodide thin films directly on conductive substrates, consisting of electrodeposition and two subsequent chemical conversions. A thorough investigation of the morphological, structural an…
Pd-Co-Based Electrodes for Hydrogen Production by Water Splitting in Acidic Media
To realize the benefits of a hydrogen economy, hydrogen must be produced cleanly, efficiently and affordably from renewable resources and, preferentially, close to the end-users. The goal is a sustainable cycle of hydrogen production and use: in the first stage of the cycle, hydrogen is produced from renewable resources and then used to feed a fuel cell. This cycle produces no pollution and no greenhouse gases. In this context, the development of electrolyzers producing high-purity hydrogen with a high efficiency and low cost is of great importance. Electrode materials play a fundamental role in influencing electrolyzer performances; consequently, in recent years considerable efforts have b…
NANOWIRES AND THIN FILMS OF CIS/CIGS OBTAINED BY ELECTRODEPOSITION AS ABSORBER FOR SOLAR CELLS
Galvanic Deposition of Hydroxyapatite/Chitosan/Collagen Coatings on 304 Stainless Steel
The galvanic deposition method was used to deposit Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel. Galvanic deposition is an alternative and valid way to fabricate bio-coatings with high biocompatibility and good anticorrosion properties. Physical-chemical characterizations were carried out to investigate chemical composition and morphology of the samples. Coatings consist of a mixture of calcium phosphate (Brushite and Hydroxyapatite) with chitosan and collagen. Corrosion tests were performed in the simulated body fluid (SBF) after different aging times. Results show that, in comparison with bare 304 stainless steel, coating shifts corrosion potential to anodic values and…
Impedance spectroscopy characterization of functionalized alumina membranes
Abstract Anodic alumina membranes have been impregnated with a protonic conductor either by immersion or by vacuum permeation of a saturated aqueous solution of CsHSO4 for different times. Synthetized salt, obtained through the reaction of cesium carbonate with sulphuric acid (in excess), contained a small quantity of Cs2SO4. Unmodified membranes consist of amorphous Al2O3 with a regular distribution of pores (average diameter: 200 nm) and are stable up to 850 °C. Long impregnation times caused partial dissolution of alumina, with formation of Al(HSO4)3 on the front surfaces as well as into pore walls. From the frequency dispersion of the impedance, the “macroscopic conductivity” of membran…
Processo di produzione di filamenti nanometrici in lega amorfa Sn-Co
Nanostructured nickel–zinc alloy electrodes for hydrogen evolution reaction in alkaline electrolyzer
Nanostructures of different oxides/hydroxides grown in nanoporous templates by electrochemical methods.
PANI-Based Wearable Electrochemical Sensor for pH Sweat Monitoring
Nowadays, we are assisting in the exceptional growth in research relating to the development of wearable devices for sweat analysis. Sweat is a biofluid that contains useful health information and allows a non-invasive, continuous and comfortable collection. For this reason, it is an excellent biofluid for the detection of different analytes. In this work, electrochemical sensors based on polyaniline thin films deposited on the flexible substrate polyethylene terephthalate coated with indium tin oxide were studied. Polyaniline thin films were abstained by the potentiostatic deposition technique, applying a potential of +2 V vs. SCE for 90 s. To improve the sensor performance, the electronic…
An electrochemical route towards the fabrication of nanostructured semiconductor solar cells
This work presents our preliminary results regarding an electrochemical process which allows the growth of nanostructured materials by means of nanopore templates. Also we analyze possible applications of this process to fabricate nanostructured semiconductors, such as CIGS, suitable for photovoltaic devices, and we consider the implications from the perspective of characterization techniques and device modelling when using such a technology.
SnCo nanowire array as negative electrode for lithium-ion batteries
Abstract Amorphous SnCo alloy nanowires (NWs) grown inside the channels of polycarbonate membranes by potentiostatic codeposition of the two metals (SnCo- PM ) were tested vs. Li by repeated galvanostatic cycles in ethylene carbonate-dimethylcarbonate – LiPF 6 for use as negative electrode in lithium ion batteries. These SnCo electrodes delivered an almost constant capacity value, near to the theoretical for an atomic ratio Li/Sn of 4.4 over more than 35 lithiation–delithiation cycles at 1 C. SEM images of fresh and cycled electrodes showed that nanowires remain partially intact after repeated lithiation–delithiation cycles; indeed, several wires expanded and became porous. Results of amorp…
Elettrodo al piombo, metodo per la sua realizzazione ed accumulatore comprendente l’elettrodo
High Efficiency Electrodes Based on Nanostructured Materials for Energy Devices
Fabrication and Characterisation of Perovskite Thin Films for Photovoltaic Application
This paper presents an alternative way to obtain perovskite thin films for photovoltaic application. This technique results more competitive, scalable, low-cost, reproducible and is different from other most common methods of fabrication.
Nanostructured materials for solar cells: electrochemical fabrication and characterization
Self-ordering of porous alumina by aluminium anodising
Ascorbic Acid determination using linear sweep voltammetry on flexible electrode modified with gold nanoparticles and reduced graphene oxide
Indium tin oxide (ITO) coated on flexible polyethylene terephthalate (PET) substrate electrode was modified with reduced graphene oxide and gold nanoparticles by simple co-electrodeposition performed at -0.8 V vs SCE for 200 s. All samples were characterized by electron scan microscopy. The as prepared electrode was used as electrochemical sensor to selective detection of ascorbic acid using linear sweep voltammetry. Excellent results were obtained in a linear range from 20 to 150 µM of ascorbic acid with a limit of detection of about 3.1 µM (S/N=3.3). The sensors have a reproducibility of about 5.5% and also show high selectivity towards different interferents such as chlorine, calcium, ma…
Development of a nanostructured sensor for monitoring oxidative stress in living cells
Oxidative burden is elevated in the lung of COPD patients and is associated with aging and chronic inflammation. When overcoming physiological levels, reactive oxygen species (ROS) cause cell damage and sustain inflammation. Both lung epithelium and alveolar macrophages contribute to ROS generation. Currently, ROS generation is measured using fluorescent probes and colorimetric/fluorimetric assays. We present an amperometric nanostructured sensor for real-time detection of hydrogen peroxide (H2O2) released by living cells. The H2O2 sensing performance was evaluated through the current vs time response of platinum rod at a working potential of −0.45 V vs saturated calomel electrode acting as…
Template electrosynthesis of nanostructures for water electrolysis
Chitosan-Coating Deposition via Galvanic Coupling
A galvanic method to deposit chitosan coatings on stainless steel substrate is reported. Deposition of suitable coatings is desired to improve biocompatibility and corrosion resistance of metallic medical devices to be implanted in human body. In the present work, a thin hydrogel layer of chitosan was deposited on 304SS by a galvanic displacement reaction, which is advantageous first as it does not require external power supply. 304SS was immersed into an aqueous solution of chitosan/lactic acid and electrochemically coupled with magnesium acting as a sacrificial anode. SEM images showed the formation of a uniform layer of chitosan with a thickness controlled by deposition time. Corrosion t…
Metodi elettrochimici per la preparazione di nanostrutture in membrane di allumina anodica
Toward Tin-Based High-Capacity Anode for Lithium-Ion Battery
Electrochemical deposition of SnCo alloys inside the nanometric pores of commercial membranes is described. Composition, morphology and crystallographic structure of the synthesized nanostructured alloys are reported as well as the results of electrochemical tests carried out both in half-cell and in full battery configuration to investigate the performance of these SnCo alloys as anodes for lithium-ion batteries. Optimized depositions yielded nanostructured alloys that performed 200 deep galvanostatic cycles at C/2 and 30 °C with 80 % capacity retention and coulombic efficiency higher than 97 % after 40 cycles Moreover, charge-discharge rate capability tests showed the high performance of …
Evolutionary Design Optimization of an Alkaline Water Electrolysis Cell for Hydrogen Production
Hydrogen is an excellent energy source for long-term storage and free of greenhouse gases. However, its high production cost remains an obstacle to its advancement. The two main parameters contributing to the high cost include the cost of electricity and the cost of initial financial investment. It is possible to reduce the latter by the optimization of system design and operation conditions, allowing the reduction of the cell voltage. Because the CAPEX (initial cost divided by total hydrogen production of the electrolyzer) decreases according to current density but the OPEX (operating cost depending on the cell voltage) increases depending on the current density, there exists an optimal cu…
CulnSe2/Zn(S,O,OH) junction on Mo foil by electrochemical and chemical route for photovoltaic applications
Electrodeposition is a convenient technique for the development of low cost materials for photovoltaic (PV) device processing. Using a single step electrodeposition route, several groups have fabricated CIS (CuInSe) and CIGS (CuInGaSe) films [1]. One of the most important requirements for successful application of one-step electrodeposition film formation, is the ability to control composition of the deposited films and to develop polycrystalline microstructures with a low surface roughness and high sintered density. In this preliminary work, CIS films were produced by single bath electrodeposition finding the optimal conditions in order to achieve a dense film with high crystallinity and u…
Template electrosyntesis of CeO2 nanotubes
Nanotube arrays of CeO2 were produced in a single step by potentiostatic electrochemical deposition from a non-aqueous electrolyte, using anodic alumina membrane templates. The CeO2 nanotubes showed a polycrystalline structure, and they were assembled in the membrane nanochannels. The nanotubes had somewhat uniform diameters, with an average external value of about 210 nm, and a maximum length of about 60 µm; the latter parameter was controlled by the electrodeposition time. Each single nanotube was found to consist of crystalline grains having a size of about 3 nm. Raman analysis shows that these CeO2 nanotubes are suitable for catalytic applications.
A simulation and experimental study of electrochemical pH control at gold interdigitated electrode arrays
Abstract In electroanalysis, solution pH is a critical parameter that often needs to be tailored and controlled for the detection of particular analytes. This is most commonly performed by the addition of chemicals, such as strong acids or bases. Electrochemical in-situ pH control offers the possibility for the local adjustment of pH at the point of detection, without the need for additional reagents. Finite element analysis (FEA) simulations have been performed on interdigitated electrodes, to guide experimental design in relation to both electroanalysis and in-situ control of solution pH. No previous model exists that describes the generation of protons at an interdigitated electrode arra…
Fabbricazione per via elettrochimica e caratterizzazione di membrane nanoporose di allumina
Nanostructured Material Fabrication for Energy Conversion
Performance of Nanostructured Electrode in Lead Acid Battery
Lead acid batteries have a large number of potential advantages, but the high weight of lead limits their use in new technologies, like hybrid or electrical cars, which require light batteries with high specific energy. We tried to overtake this limit with nanostructured electrodes of PbO2 and Pb, obtained by electrodeposition in polycarbonate template. In the case of lead, to obtain electrodes with very good mechanical stability, a systematic investigation of electrodeposition process was needed to overcome the formation of dendrites that is the principal limitation of electrochemical production of metal lead. Nanostructured electrodes were tested in a zero gap configuration, using commerc…
Ni alloy nanowires as high efficiency electrode materials for alkaline electrolysers
Abstract The fabrication and characterization of nickel-alloy electrodes for alkaline electrolysers is reported. Three different alloys (Ni–Co, Ni–Zn and Ni–W) at different composition were studied in order to determine the optimum condition. Nanostructured electrodes were obtained by template electrodeposition into a nanoporous membrane, starting from aqueous solution containing the two elements of the alloy at different concentrations. Composition of alloys can be tuned by electrolyte composition and also depends on the difference of the redox potential of elements and on the presence of complexing agents in deposition bath. Electrochemical and electrocatalytic tests, aimed at establishin…
Metal displacement deposition: a new route for template fabrication of metal and metal oxide nanostructures
Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers
Owing to the progressive abandoning of the fossil fuels and the increase of atmospheric CO2 concentration, the use of renewable energies is strongly encouraged. The hydrogen economy provides a very interesting scenario. In fact, hydrogen is a valuable energy carrier and can act as a storage medium as well to balance the discontinuity of the renewable sources. In order to exploit the potential of hydrogen it must be made available in adequate quantities and at an affordable price. Both goals can be potentially achieved through the electrochemical water splitting, which is an environmentally friendly process as well as the electrons and water are the only reagents. However, these devices stil…
Electrochemical synthesis and characterization of self-standing metal oxide nanostructures
Nanostructured electrodes for hydrogen production in alkaline electrolyzer
Abstract Ever-widespread employment of renewable energy sources, such as wind and sun, request the simultaneous use of effective energy storage systems owing to the intermittent and unpredictable energy generation by these sources. The most reliable storage systems currently under investigation are batteries and electrochemical cells for hydrogen production from water splitting. Both systems store chemical energy which can be converted on demand. The low power density is the weakness of the batteries while the high production cost limits currently the wide use of hydrogen from electrochemical water splitting. In this work, attention was focused on the use of nanostructured Ni as a cathode f…
Template Electrochemical Growth and Properties of Mo Oxide Nanostructures
This work is aimed at studying the growing process of nanostructures electrodeposited from molybdate aqueous solutions at different pH values into pores of polycarbonate membrane templates. The challenging issue was the opportunity to investigate a rather complex deposition process in a confined ambient, where electrochemical conditions are quite different from those usually established for deposition on a flat substrate. Nanostructures were grown from a bath containing Mo7O246– (NH4)6Mo7O24·4H2O) at different concentrations (50–100 g/L), at a constant cathodic current density of 2 mA/cm2 (electrodeposition area ∼8 cm2). Nanostructured deposit was characterized by XRD, EDS, Raman, XPS, and …
Nanostructured Material Fabrication for Energy Conversion
The electrochemical deposition is a suitable via to fabricate nanostructured materials for energy conversion, and for other purposes. This paper deals with the electrochemical synthesis of nanostructured alloys and ruthenium oxide, which can be used in Li-ion batteries and polymer electrolyte membrane electrolyzers.
Galvanic deposition of Chitosan-AgNPs as antibacterial coating
Thanks to mechanical properties similar human bones, metallic materials represent the best choice for fabrication of orthopedic implants. Although metals could be widely used in the field of biomedical implants, corrosion phenomena could occur, causing metal ions releasing around periprosthetic tissues leading, in the worst cases, to the development of infections. In these cases, patients need prolonged antibiotic therapies that may cause bacterial resistance. Preventing bacterial colonization of biomedical surfaces is the key to limiting the spread of infections. Antibacterial coatings have become a very active field of research, strongly stimulated by the increasing urgency of identifying…
Effect of Polyhydroxyalkanoate (PHA) Concentration on Polymeric Scaffolds Based on Blends of Poly-L-Lactic Acid (PLLA) and PHA Prepared via Thermally Induced Phase Separation (TIPS)
Hybrid porous scaffolds composed of both natural and synthetic biopolymers have demonstrated significant improvements in the tissue engineering field. This study investigates for the first time the fabrication route and characterization of poly-L-lactic acid scaffolds blended with polyhydroxyalkanoate up to 30 wt%. The hybrid scaffolds were prepared by a thermally induced phase separation method starting from ternary solutions. The microstructure of the hybrid porous structures was analyzed by scanning electron microscopy and related to the blend composition. The porosity and the wettability of the scaffolds were evaluated through gravimetric and water contact angle measurements, respective…
Deposition and characterization of coatings of Hydroxyapatite, Chitosan, and Hydroxyapatite-Chitosan on 316L for biomedical devices
In the last decades, the scientific community has turned on great interest towards the development of increasingly performing biomedical systems. In the orthopedic field, biomedical devices are made up by metallic materials (mainly steel and titanium alloys), which have low/medium resistance to corrosion and a low osteointegration capacity when implanted inside the human body. This can lead to infection or inflammation that can damage the tissues surrounding the implant. The use of biocompatible coatings allows cancelling or mitigating these phenomena. The coating interposing between aggressive environment and biomedical device inhibits corrosion so limiting the metal ions release into the …
FLEXIBLE ELECTRODE BASED ON GOLD NANOPARTICLES AND REDUCED GRAPHENE OXIDE FOR URIC ACID DETECTION USING LINEAR SWEEP VOLTAMMETRY
In this work, an electrochemical sensor for uric acid determination is shown with a preliminary study for its validation in real samples (milk and urine). Uric acid can be electrochemically oxidized in aqueous solutions and thus it is possible to obtain electrochemical sensors for this chemical by means of this electrooxidation reaction. Indium tin oxide coated on flexible polyethylene terephthalate substrate, modified with reduced graphene oxide and gold nanoparticles by co-electrodeposition, was used. Electrodeposition was performed at -0.8V vs SCE for 200 s. All samples were characterized by electron scan microscopy and electron diffraction spectroscopy. A careful investigation on the ef…
Dismantling and electrochemical copper recovery from Waste Printed Circuit Boards in H2SO4–CuSO4–NaCl solutions
Abstract The worldwide growing of electrical and electronic equipment makes increasingly urgent to find environmentally friendly treatments for e-waste. In this paper, the attention has been focused on i) the eco-friendly dismantling of the electronic components from Waste Printed Circuit Boards and ii) recovering of pure metallic copper, which is the most abundant metal and one of the most valuable in Printed Circuit Boards. After an experimental optimization study, we found that a solution containing 0.5 M H2SO4, 0.4 M CuSO4, and 4 M NaCl can be successfully used to disassemble the electronic components from the boards by leaching of all exposed metals. Air was blown into the leaching sol…
Nanostructured anode material for Li-ion batteries
The present paper focuses on a nanostructured SnCo alloy electrochemically prepared by template method in view of its use as anode material alternative to graphite in lithium-ion batteries. The fabrication of SnCo nanowire arrays was carried out by potentiostatic co-deposition of the two metals by using nanostructured anodic alumina membranes as template. Electrochemical tests on lithiation-delithiation of these SnCo electrodes in conventional organic electrolyte (EC:DMC LiPF6) at 30°C showed that their specific capacity was stable for about the first 12 cycles at a value near to the theoretical one for Li22Sn5 and, hence, progressively decayed.
Electrodeposition of lead dioxide nanowires with a high aspect ratio
Novel acidic hydrogel electrolytes based on PVA and PVA blends
High-Performance Lead-Acid Batteries Enabled by Pb and PbO2 Nanostructured Electrodes: Effect of Operating Temperature
Lead-acid batteries are now widely used for energy storage, as result of an established and reliable technology. In the last decade, several studies have been carried out to improve the performance of this type of batteries, with the main objective to replace the conventional plates with innovative electrodes with improved stability, increased capacity and a larger active surface. Such studies ultimately aim to improve the kinetics of electrochemical conversion reactions at the electrode-solution interface and to guarantee a good electrical continuity during the repeated charge/discharge cycles. To achieve these objectives, our contribution focuses on the employment of nanostructured electr…
Optimized bath for electroless deposition of palladium on amorphous alumina membranes
A new bath for the electroless deposition of palladium on anodic alumina (AA) membranes is proposed. It was found that the optimal conditions for the uniform deposition of palladium, with minimal damage to the AA membranes, were under conditions of pH 8.4 and plating times shorter than 30 min. The deposited Pd layer was detected by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis. The morphology of the AA membrane before and after plating was examined by scanning electron microscopy (SEM). EDX analysis revealed that palladium was deposited only on the surfaces of the membrane and Sn ions, coming from the sensitizing bath, were incorporated into the palladium layer. EDTA in…
Fabrication of Metal Oxide Nano-structured electrodes by Template Electrosynthesis
Metodo di realizzazione di un elettrodo ad elevata densità energetica ed elettrodo ottenibile con tale metodo
Nanostructured Electrochemical Devices for Sensing, Energy Conversion and Storage
Nanomaterials are very promising to enhance device performances for sensing, sustainable energy production, and energy conversion and storage, as extensively reported in the literature [1-3]. In this field, one of the most severe challenge is to find suitable methods for fabricating nanomaterials. Over the years, numerous preparation methods were proposed in the literature, but not all of them are easily scalable and economically advantageous for industrial application. In this context, electrochemical deposition in template is a facile method for fabricating either two- or one-dimensional nanostructured materials because it allows to easily adjust the fundamental parameters controlling the…
Electrochemical and chemical synthesis of CIS/Zn(S,O,OH) for thin film solar cells
In this work, we are reporting results on the electrodeposition of the CuInSe2 thin films on molybdenum thin foil substrates. We have used an aqueous non-buffered electrolyte and a careful choice of deposition parameters to ensure a good quality and composition of the deposited films. In addition, CdS was replaced in the buffer layer with a wider bandgap Zn(S,O,OH) film obtained by chemical bath deposition. The deposited films were annealed in inert atmosphere at different temperatures. The influence of annealing temperature on the properties of the films is briefly discussed. Films were also characterized by photoelectrochemical and I-V measurements. Structural characterization was carried…
A new route to grow oxide nanostructures based on metal displacement deposition. Lanthanides oxy/hydroxides growth
Abstract A metal displacement reaction has been used in order to cause precipitation of oxide nanostructures within pores of anodic alumina membrane (AAM) templates. Here, we focus on the displacement deposition of LnO/OH (Ln = La, Ce, Sm, Er) nanostructures using Zn as sacrificial anode, employing a specific cell arrangement where a galvanic couple was formed between zinc anode and the Au thin layer covering template pore bottom. Progress of displacement deposition reaction into template channels was monitored measuring the open circuit potential as well as pH changes of the electrolyte. A progressive de-activation of the anode surface was observed for long deposition times, caused by depo…
Behavior of Calcium Phosphate–Chitosan–Collagen Composite Coating on AISI 304 for Orthopedic Applications
Calcium phosphate/chitosan/collagen composite coating on AISI 304 stainless steel was investigated. Coatings were realized by galvanic coupling that occurs without an external power supply because it begins with the coupling between two metals with different standard electrochemical potentials. The process consists of the co-deposition of the three components with the calcium phosphate crystals incorporated into the polymeric composite of chitosan and collagen. Physical-chemical characterizations of the samples were executed to evaluate morphology and chemical composition. Morphological analyses have shown that the surface of the stainless steel is covered by the deposit, which has a very r…
Preparation and characterization of anodic alumina membranes modified by electroless deposition of Pd
Fabbricazione e caratterizzazione di elettrodi di PbO2 nanostrutturati
Nanostructured lead acid battery for electric vehicles applications
This paper presents an innovative lead acid battery, based on nanostructured active materials. Both charging time and specific energy are greatly enhanced in comparison with commercial lead acid battery. Starting from the extremely valuable performances of the nanostructured battery, also a circuital model, for application in electric vehicle traction, has been specifically developed. The circuital model has demonstrated that an enhanced nanostructured battery allows an increase of traveled distance by electric vehicles.
Developing a procedure to optimize electroless deposition of thin palladium layer on anodic alumina membranes
In recent years, the increased demand for hydrogen in many industrial applications, like petrochemical and semiconductor processing, and sustainable energy (fuel cells) has led to a renewed interest in methods for separation and purification of hydrogen from gas mixtures. In particular, palladium-based membranes have been the subject of many studies, due to their potential use as hydrogen-selective membranes for gas separation or purification [1,2]. Owing to the high cost of palladium and in order to increase the flow rate of hydrogen, composite membranes, formed by a thin layer of palladium deposited on a porous support, are largely preferred to thick self-standing metal membranes. Differe…
A direct comparison of 2D versus 3D diffusion analysis at nanowire electrodes: A finite element analysis and experimental study
In electroanalysis, the benefits accrued by miniaturisation are a key driver in sensor development. Finite element simulations of electrochemical processes occurring at ultramicro- and nano-electrodes are used to provide key insight into experimental design in relation to diffusion profiles and expected currents. The most commonly used method, the diffusion domain approach (DDA) offers a means of reducing a three dimensional design to two dimensions to ease computational demands. However, the DDA approach can be limited when using basic assumptions which can be incorrect, for example that all electrodes in an array are equivalent. Consequently, to get a more realistic view of molecular diff…
A viable path toward a high energy density anode for lithium-ion batteries
Nickel-Indium Sulphide Core-Shell Nonostructures Obtained by Spray-ILGAR Deposition
Ni nanowires (NWs) of different lengths were fabricated by pulsed potentiostatic deposition within pores of polycarbonate membranes. After template dissolution, substrates underwent sequential Spray-ILGAR® depositions of thin indium sulphide films. The effect of deposition temperature was also investigated. For low number of deposition cycles, results showed complete and uniform covering of metal over the entire length of NWs, with formation of Ni - In2S3 core-shell structures. However, with increasing number of deposition cycles films became uneven and crusty, especially at higher temperatures, owing to the simultaneous formation of nickel sulfide. This drawback was almost eliminated doubl…
Comparison of 2D versus 3D diffusion analysis at Nanowire Electrodes: Finite element analysis and experimental study
In electroanalysis, finite element simulations of electrochemical processes occurring at electrodes are used to provide key insight into experimental design in relation to diffusion profiles and expected currents. The diffusion domain approach (DDA) offers a means of reducing a three dimensional design to two dimensions to ease computational demands. However, the DDA approach can be limited when basic assumptions, for example that all electrodes in an array are equivalent, are incorrect. Consequently, to get a more realistic view of molecular diffusion to nanoelectrodes, it is necessary to undertake simulations in 3D. In this work, two and three dimensional models of electrodes comprising o…
Photoelectrochemical characterization of Cu2O-nanowire arrays electrodeposited into anodic alumina membranes
Perfectly aligned nanowire arrays of polycrystalline Cu2O were grown by template-pulsed electrodeposition from a cupric acetate-sodium acetate bath into anodic alumina membranes (AAM). The photoelectrochemical behavior of arrays with different nanowire lengths (0.5 mu m and 2 mu m) was investigated in neutral solution, and the results compared to those pertaining to Cu2O films grown with the same procedure. Although all samples displayed the same indirect bandgap (similar to 1.9 eV), differences were observed both in photocurrent intensity and sign. The latter changed with potential and wavelength in different ways for nanowires and films, revealing a different defect concentration in the t…
Template Electrosynthesis of SnCo Nanowire Arrays for Lithium-ion Batteries
Ni-Fe alloy nanostructured electrodes for water splitting in alkaline electrolyser
Abstract In this work, nickel-iron alloy nanostructured electrodes obtained by template electrosynthesis method are investigated for both hydrogen and oxygen evolution reactions. Electrodes consist of nanowire arrays with high surface area that are able to ensures a high electrolytic activity. To obtain different alloy compositions, the concentration of the elements in the deposition baths is appropriately tuned. Results show that the composition of nanowires does not change linearly with the composition of deposition bath but are richer in Fe. Nanostructured electrodes are tested as both cathodes and anodes in 30 wt% KOH aqueous solution, at room temperature to determine the best alloy com…
Nanostructured Lead Electrodes with Reduced Graphene Oxide for High-Performance Lead–Acid Batteries
Nanostructured Pb electrodes consisting of nanowire arrays were obtained by electrodeposition, to be used as negative electrodes for lead–acid batteries. Reduced graphene oxide was added to improve their performances. This was achieved via the electrochemical reduction of graphene oxide directly on the surface of nanowire arrays. The electrodes with and without reduced graphene oxide were tested in a 5 M sulfuric acid solution using a commercial pasted positive plate and an absorbed glass mat separator in a zero-gap configuration. The electrodes were tested in deep cycling conditions with a very low cut-off potential. Charge–discharge tests were performed at 5C. The electrode wi…
Pb-PbOHCl Composite Nanowires Synthesized by Galvanic Deposition in Template
In this paper, we report a detailed study on the synthesis of composite nanowires of Pb-PbOHCl via galvanic deposition into the pores of a membrane acting as a template. PbOHCl deposition quantitatively occurs as the solution pH exceeds the value of about 4.12. Simultaneously, owing to the galvanic coupling, electro-deposition of lead occurs, so composite nanowires were formed. The role of different parameters controlling the kinetic evolution of the process, such as oxygen bubbling, solution pH, surface area and type of sacrificial anode were investigated one at a time. The results suggest that every modification accelerating the alkalization of the solution inside the template pores favor…
GROWTH AND PHOTOELECTROCHEMICAL BEHAVIOUR OF ELECTRODEPOSITED ZnO THIN FILMS FOR SOLAR CELLS
Thin zinc oxide films were deposited potentiostatically from zinc nitrate aqueous solutions on ITO substrates. The influence of experimental parameters (temperature, electrolyte concentration, deposition potential) on structure and morphology of films was investigated. Deposited films were generally polycrystalline in structure, even if growth according to preferential planes occurs in certain conditions. The effect of thermal treatments in air at 150 and 350 °C was also studied. In some cases, Cl species were incorporated into deposit by adding zinc chloride to the electrolyte. A photoelectrochemical investigation, performed in neutral solution before and after thermal treatment, gives mor…
Eulerian two-fluid model of alkaline water electrolysis for hydrogen production
Hydrogen storage is a promising technology for storage of renewable energy resources. Despite its high energy density potential, the development of hydrogen storage has been impeded, mainly due to its significant cost. Although its cost is governed mainly by electrical energy expense, especially for hydrogen produced with alkaline water electrolysis, it is also driven by the value of the cell tension. The most common means of electrolyzer improvement is the use of an electrocatalyst, which reduces the energy required for electrochemical reaction to take place. Another efficient means of electrolyzer improvement is to use the Computational Fluid Dynamics (CFD)-assisted design that allows the…
Metodo Per l’Accrescimento di Nanostrutture in Silicio E Dispositivo Elettrico Comprendente Tali Nanostrutture
Anodic alumina membranes modified by electroless deposition of Pd and Ni
Monodimensional Amorphous SnCo Arrays As High Performing Anodes for Lithium Ion Batteries
Nanostructured Nickel alloy electrodes for alkaline electrolysers
Nanostructured Pd-AAM composite membranes
Nanostructured anode and cathode materials for Li-ion batteries
Fabrication of CIS and CIGS nanowires for application in micro-photovoltaic device
Phosphate ions detection by using an electrochemical sensor based on laser-scribed graphene oxide on paper
In this work, electrodes based on laser-scribed reduced graphene oxide were fabricated using filter paper as the substrate. To fabricate the electrodes, a water suspension of graphene oxide was filtered to produce a continuous and uniform film of graphene oxide on the filter paper surface. Subsequently, a CO2 laser was used to "write" the working, counter and reference eelctroes by reducing graphene oxide in specific areas to define complete sensors. Referecnce electrodes were then coated with a commercial Ag/AgCl conductive paste to produce a quasi Ag/AgCl reference. As fabricated devices were employed as electrochemical sensors for detection of phosphate ions in water by employing the mol…
Ni/NiO thin film Sensors for Mercury ions detection by Square wave anodic stripping voltammetry
Square wave anodic stripping voltammetry (SWASV) is considered a very interesting electrochemical method for heavy metals detection in comparison to conventional techniques [1]. The main features of this technique are the high sensitivity and reproducibility (standard deviation lower than 5%), besides, the limit of detection is in the ppb level so is comparable with standard techniques such as AAS or ICP, the instrumentation is very inexpensive and easy to use and the detection time is very low. Among heavy metals, mercury is one of the most toxic for both environment and humans. In fact, it may cause serious health problems to brain, kidney and DNA. The concentration limit imposed by US En…
THIN ZNS FILMS OBTAINED BY ELECTRODEPOSITION AS BUFFER FOR SOLAR CELLS
Template Fabrication of Nano-Structures using Anodic Alumina Membranes
The influence of experimental parameters on the morphology of the porous structure and on the formation kinetics has been investigated for anodic alumina membranes (AAM) grown in aqueous H3PO4 at 160 V. It was found that pore aspect ratio and membrane porosity on the solution-side surface are influenced by tensiostatic charge, bath temperature and the presence of Al3+ ions in solution. Morphological and kinetic data, recorded in different conditions, give useful information on the growth mechanism of pore channels in phosphoric acid solution. Nickel nano-structures have been fabricated using AAM as ternplate.
Sintesi per via elettrochimica di nanowires di leghe Co-Sn
Behavior Modification of Nanostructured PbO2 Electrodes in Lead Acid Batteries Changing Electrolyte Concentration and Separator
Currently, lead acid battery is extensively investigated owing to its prevalent use as a startinglighting and ignition device. An essential role for electrochemical reactions is played by the surface area available for conversion reactions and a possible approach is the use of nanostructured electrodes. In this work, lead dioxide nanostructured electrodes were tested in order to investigate the dependence of the charge and discharge behaviour on some parameters such as electrolyte concentration, and a new type of thin separator. In this last case, it is possible to reduce the size of the cell by using a very thin separator comparable to the nanostructured electrode thickness. Besides, a low…
Pumps as turbines regulation study through a decision-support algorithm
The water distribution network (WDN) is subject to water leakages due to pipes breaking, which induces a wastage of water and overconsumption of power for pumps. Leakages are directly related to pressure in the pipes. To reduce leakages, pressure reducing valves (PRV) are installed in water distribution networks to reduce pressure in the pipes. However, pressure reduction induces a loss of energy which is wasted within the PRV. To recover a part of this energy, pressure reducing valves can be replaced by using pumps as turbines (PATs). Since head and flow rates are variable in the WDN, it is necessary to regulate the PAT, which does not function properly under variable upstream conditions. …
Electrochemical Quantification of H2O2 Released by Airway Cells Growing in Different Culture Media
Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham’s F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrode…
Metal Displacement Deposition: a facile via to grow metal and metal oxide nanostructures
Nanostructured materials have received increasing attention because of their high chemical reactivity that allows an extensive use in many fields, like catalysis, electrosynthesis, sensors, and so on [1]. Taking into account that size plays a fundamental role for the properties of nanostructures, it is of relevant importance for their applications to develop a facile method of synthesis. In our previous works, we have described a template synthesis of metal nanowires through a simple novel route [2-4]. In particular, using a combination of template deposition and metal displacement reaction, we have fabricated pure metal nanowires with a well-defined morphology. This type of template synthe…
Electrochemical sensor based on rGO/Au nanoparticles for monitoring H2O2 released by human macrophages
Abstract Increased oxidative burden contributes to the pathogenesis of most inflammatory diseases and is associated with aging and chronic inflammation. Macrophages contribute to the generation of reactive oxygen species (ROS) within inflamed tissues. Currently, ROS generation is measured using fluorescent probes and colorimetric/fluorimetric biochemical assays. Hydrogen peroxide (H2O2) diffuses through the cell membrane and can be monitored in the extracellular space. Herein, we present a sensor for H2O2 detection released by cells in culture supernatants. H2O2 sensing performance was evaluated using chronoamperometric detection. A sensitivity of 0.0641 μA μM−1 cm−2 with a limit of detecti…
Fabrication and characterization of nanostructured Ni–IrO2 electrodes for water electrolysis
Abstract Nanostructured Ni–IrO2 electrodes were fabricated by electrodeposition in a two-step procedure: first arrays of nickel nanowires (NWs) were electrodeposited within pores of polycarbonate (PC) membranes, then iridium oxide nanoparticles were deposited on the Ni metal after membrane dissolution, for improving the catalytic activity. The aim was to compare performance of these electrodes with traditional ones consisting of Ni film. Different methods of deposition of the IrO2 electrocatalyst were investigated and the effect on electrodes stability and activity is discussed. Despite a low coverage of Ni NWs by the electrocatalyst, results indicate a faster kinetics of O2 evolution in 1 …
Nanostructured PbO2 electrode for lead-acd batery
Suitability of the VOF Approach to Model an Electrogenerated Bubble with Marangoni Micro-Convection Flow
When a hydrogen or oxygen bubble is created on the surface of an electrode, a micro-convective vortex flow due to the Marangoni effect is generated at the bottom of the bubble in contact with the electrode. In order to study such a phenomenon numerically, it is necessary to be able to simulate the surface tension variations along with a liquid-gas interface, to integrate the mass transfer across the interface from the dissolved species present in the electrolyte to the gas phase, and to take into account the moving contact line. Eulerian methods seem to have the potential to solve this modeling. However, the use of the continuous surface force (CSF) model in the volume of fluid (VOF) framew…
Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water
Contamination of water with nitrate ions is a significant problem that affects many areas of the world. The danger from nitrates is not so much their toxicity, rather low, as their transformation into nitrites and in particular into nitrosamines, substances considered to be a possible carcinogenic risk. For this reason, European legislation has set the maximum permissible concentration of nitrates in drinking water at 44 mg/l. Thus, it is clear that a continuous monitoring of nitrate ions is of high technological interest but it must be rapid, easy to perform and directly performed in situ. Electrochemical detection is certainly among the best techniques to obtain the above requirements. In…
One-dimensional nanostructures of lead and lead dioxide for application in lead-acid batteries
Fabrication of Pb and PbO2 nanostructures was undertaken with the aim of building low cost lead acid micro-batteries with high performance. Despite environmental problems and the relatively low specific energy in comparison with other galvanic generators, lead acid batteries are still extensively used in the field of energy accumulation, owing to a well known and reliable technology. Thus, it is of high technological interest to develop procedures for fabricating these devices at a micrometer scale or less. PbO2 nanowires were grown in different electrochemical deposition conditions leading to pure -PbO2, pure -PbO2 and mixture [1-2]. Several parameters, like temperature, electrolyte…
Cellular and Molecular Signatures of Oxidative Stress in Bronchial Epithelial Cell Models Injured by Cigarette Smoke Extract
Exposure of the airways epithelium to environmental insults, including cigarette smoke, results in increased oxidative stress due to unbalance between oxidants and antioxidants in favor of oxidants. Oxidative stress is a feature of inflammation and promotes the progression of chronic lung diseases, including Chronic Obstructive Pulmonary Disease (COPD). Increased oxidative stress leads to exhaustion of antioxidant defenses, alterations in autophagy/mitophagy and cell survival regulatory mechanisms, thus promoting cell senescence. All these events are amplified by the increase of inflammation driven by oxidative stress. Several models of bronchial epithelial cells are used to study the molec…
Electrosynthesis of Sn-Co nanowires in alumina membranes
A fabrication process of amorphous nanowires of Sn-Co alloys, based on electrodeposition into anodic alumina membranes, is described. It is shown that nanowires of tin-cobalt alloys with different compositions can be produced by varying electrodeposition time and concentration ratio of salts dissolved into the electrolytic bath. Importance of the chelating agent to produce amorphous Sn-Co alloys has also been addressed. Electrodepositions were carried out potentiostatically at -1 V versus Saturated Calomel Electrode and 60 degrees C for times ranging from 10 to 90 minutes; the atomic fraction of Co2+ in the aqueous electrolyte (Co2+/(Co2+ + Sn2+)) was varied from 0.33 to 0.67. Nanowires asp…
Synthesis of Silver Gallium Selenide (AgGaSe2) Nanotubes and Nanowires by Template-Based Electrodeposition
In this work, a systematic investigation of the different parameters that control the electrodeposition processes was carried out at the aim to synthetizing AgGaSe₂ nanostructures. We found that pH is a key parameter to control both the morphology and composition of the nanostructures. Low pH favours mainly the formation of Ag2Se nanotubes with a scarce mechanical stability, while multi-phase nanowires well anchored to the substrate were obtained at higher pH. We also found that it was necessary to increase dramatically the concentration of the gallium precursor into the deposition bath in order to obtain AgGaSe₂ owing to lower redox potential of the Ga3+/Ga couple than Ag2+/Ag and Se4+/Se.…
Formation of lead by reduction of electrodeposited PbO2: comparison between bulk films and nanowires fabrication
Metallic lead was deposited, both in form of bulk films and nanowire array within pores of anodic alumina membranes, following a new two-step procedure, consisting in anodic electrodeposition of α-PbO2, followed by its reduction to metallic lead. This method allows to overcome drawbacks of the “direct” electrodeposition of lead from aqueous solution, consisting, essentially, in the formation of dendritic deposits. Here, we report the comparison between results obtained in the two cases and discuss the kinetic of oxide reduction both for films and nanowires. Deposit morphology and structure are also discussed. We have found that reduction of α-PbO2 films proceeds always at high speed and uni…
Effect of temperature on the growth of alfa-PbO2 nanostructures
Abstract Ordered arrays of α-PbO 2 nanostructures were grown by galvanostatic anodic deposition into the channels of alumina templates. Electrodepositions were performed in an aqueous solution containing lead acetate and sodium acetate at pH 5.4. Bath temperature and electrodeposition time were varied to check their effect on the growth of nanostructures. It has been found that filling of alumina pores is independent of the time and electrodeposition temperature, whilst height and growth kinetics of nanostructures vary with both parameters. Temperature greatly influences morphology: wires grown at room temperature consisted of clusters of particles, leading to poorly compact structures, whi…
Characterization of thin film CIG(S,SE)2 submodules using solar simulator and laser beam induced current techniques (Versione estesa)
In this work, the electrical and optical characterization of CIG(S, Se)2 sub-modules using both a solar simulator equipment and the Laser Beam Induced Current (LBIC) technique is presented. By using the solar simulator and a proper set-up, the electrical parameters of the modules at varying irradiance and temperatures are determined. In addition, the LBIC measurements are carried out to analyze the 2D photocurrent uniformity of the modules at two different wavelengths. Dispersion values of extracted parameters can be very useful for practically tuning the modelling stage at device/module level.
Growth and Electrochemical Performance of Lead and Lead Oxide Nanowire Arrays as Electrodes for Lead-Acid Batteries
n this work, we present the growth and electrochemical performance of nanostructured lead and lead oxide electrodes for lead-acid batteries. The electrodes were obtained by template electrodeposition in polycarbonate membranes, acting as template. Electrochemical tests were conducted at constant current in 5M aqueous solution of sulphuric acid, after assembling nanostructured lead and lead oxide electrodes in a zero-gap configuration using a commercially available separator. The main advantages of these electrodes are the high specific energy and power density, and the wide surface area, about 70 times higher than the geometrical one. These features allowed high discharge rates, up to 20C. …
Nanowire fabrication by metal dislacement deposition into anodic alumina membranes templates
EFFECT OF ANNEALING PROCESS ON CIGS FILMS PREPARED BY ONE-STEP ELECTRODEPOSITION
Ruthenium Oxide Nanotubes Via Template Electrosynthesis
Ruthenium oxide nanotubes were fabricated by a single-step galvanostatic deposition using porous anodic alumina membrane as template. For the electrodeposition process, we used a electrochemical cell specifically designed in order to employ only 0.5 ml of 0.02 M RuCl3•xH2O solution. The deposition from a very small volume was specifically addressed owing to the high cost of ruthenium compounds, which could be of some relevance from an applicative point of view. Several techniques were used to characterize the samples prior to and after thermal treatment, which was carried out at different temperatures in order to study the crystallization process of the deposit. Raman spectroscopy of as-dep…
CuZnSnSe NANOTUBES AND NANOWIRES BY TEMPLATE ELECTROSYNTHESIS
In this work we present some results of an extensive investigation aimed to find suitable conditions to grow CuZnSnSe (CZTSe) nanostructures through single-step electrodeposition into the channels of polycarbonate membranes. After the optimization of several electrodeposition parameters, we have found that pulsed current deposition, between 0 and -1 mA cm-2, is the best way to obtain CZTSe nanostructures mechanically attached to the support. An interesting result concerns the effect of supporting electrolyte in the deposition bath. In fact, changing its concentration it is possible to vary morphology of nanostructures from nanotubes to nanowires. In both case uniform arrays of ordered nanos…
Growth and photo-electrochemical behaviour of Cu2O nanowires
Vertical standing copper nanowires for electrochemical sensor of nitrate in water
Nitrogen, in the forms of nitrate (NO3-), nitrite, or ammonium, is a nutrient needed for plant growth and it is a common constituent of fertilizers [1]. When fertilizers are overused, they contaminate the ground water and then the food chain. For humans, a low level of nitrate is advisable because it increases the blood flow and has a good effect on both blood pressure and cardiovascular system. On the contrary, a high concentration of nitrate can be dangerous for humans. Nitrate ions undergoes different chemical transformations (i.e. to nitrite ions by Escherichia coli) producing different nitrogen-based compound such as nitrite ions, nitric oxide and ammonia [2]. These chemicals lead to s…
Electrodeposition and Photoelectrochemical Behaviour of CIGS Thin Films and Nanowire Arrays for Solar Cells
One-dimensional nanostructures as electrode materials for water electrolysis
Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel
In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were char…
Growth and Characterization of Ordered PbO[sub 2] Nanowire Arrays
Large arrays of PbO 2 nanowires having high aspect ratios (length-to-width ratio) were grown by potentiostatic electrodeposition into anodic alumina templates under anodic polarization. Different electrolytic solutions were used in order to obtain nanowires of pure α-PbO 2 , pure β-PbO 2 , and a a + β mixture, We have found that, in a lead nitrate bath, a crystallographic structure of nanowires depends on pH; this latter was varied adding diluted nitric acid to the electrolyte. Nanowires of pure β-PbO 2 were obtained at pH 0.6, while mixed α-PbO 2 + β-PbΟ 2 nanowires were grown at pH 2. Pure α-phase was obtained in a bath containing lead acetate at pH 6.6. In all deposition conditions, nano…
A Route to Grow Oxide Nanostructures Based on Metal Displacement Deposition: Lanthanides Oxy/Hydroxides Characterization
Electrochemical sensor for evaluating oxidative stress in airway epithelial cells
Cigarette smoke exposure induces oxidative stress within the airways. Increased oxidative burden contributes to the pathogenesis of chronic lung disorders and is associated with aging and chronic inflammation. Airway epithelial cells highly contribute to Reactive Oxygen Species (ROS) generation within injured and inflamed lung tissues. Among ROS, hydrogen peroxide (H2O2) can be monitored in the extracellular space. Herein, we present an amperometric/voltammetric sensor based on gold nanoparticles and graphene oxide able to detect H2O2 with good sensitivity and selectivity. Using this sensor, H2O2 release was measured in conditioned medium from primary bronchial epithelial cells (PBEC), bron…
Ultrafast cycling of lead-acid battery with nanostructured Pb and PbO2 electrodes
EIS characterization of functionalized alumina membranes
Simultaneous detection of copper and mercury in water samples using in-situ pH control with electrochemical stripping techniques
The performance of electrochemical sensors using an in situ pH control technique for detection of mercury and copper in neutral solutions is described herein. Sensors are comprised of two distinct parallel gold interdigitated microband electrodes each of which may be polarised separately. Biasing one interdigitated “protonator” electrode sufficiently positive to begin water electrolysis, resulted in the production of H+ ions, which, consequently droped the interfacial pH at the other second interdigitated “sensing” electrode. This decrease in pH permitted the electrodeposition (and consequent stripping) of metals at a sensing electrode without the need to acidify the whole test solution. In…
Una Via Elettrochimica per la Fabbricazione di Celle Solari a Semiconduttori Nanostrutturati
Nella memoria si presentano i risultati preliminari su un processo di crescita elettrochimica di materiali nanostrutturati mediante l’impiego di stampi nanoporosi. Vengono quindi analizzate le possibili applicazioni del processo alla fabbricazione di semiconduttori nanostrutturati di interesse nel settore fotovoltaico, quali il CIGS, e le implicazioni dal punto di vista delle tecniche di caratterizzazione e di modellazione per dispositivi basati su tale tecnologia.
Effects of Plant Density on the Number of Glandular Trichomes and on Yield and Quality of Essential Oils from Oregano.
Plants yields are influenced by agronomic techniques. Plant density is a complex issue and extremely important when maximizing both crop quality, and biomass and essential oil yields. Plants belonging to the Origanum vulgare subspecies hirtum (Link) Ietswaart were grown adopting four types of plant density and were characterized in biometric and chemical terms. The samples were analyzed using the ANOVA (Principal Component Analysis) statistical method regarding biometric aspects, EO yield and peltate hair density. Essential oil (EO) was extracted by hydrodistillation and analyzed using GC-FID and GC-MS. GC-FID and GC-MS analysis led to the identification of 45 compounds from the EO. Plant …
Recent improvements in PbO2 nanowire electrodes for lead-acid battery
Abstract Lead oxide nanowires are an attractive alternative to conventional pasted electrodes, owing to their high surface area leading to high specific energy batteries. Here, we report the performance of template electrodeposited PbO 2 nanowires used as positive electrodes. Nanostructured electrodes were tested at constant charge/discharge rate from 2 C to 10 C, with a cut-off potential of 1.2 V and discharge depth up to 90% of the gravimetric charge. These new type of electrodes are able to work at very high C-rate without fading, reaching an efficiency of about 90% with a very good cycling stability. In particular, after an initial stabilization, a specific capacity of about 200 mAh g −…
Performance Enhancement of Alkaline Water Electrolyzer Using Nanostructured Electrodes Synthetized by Template Electrosynthesis
The increase of power generation by renewable sources is causing problems in the management of the electricity grid. In order to favor the transition from the current energy production towards renewable energy sources, it is necessary to plan strategy to develop suitable energy storage systems. Certainly, the electrochemical hydrogen production can be considered as one of the most promising storage technologies. In this work, an innovative alkaline electrolyzer is presented from its design based on the use of nanostructured electrodes up to its implementation suggested by the results of tests simulating real operation. The nanostructured electrodes were fabricated by template electrosynthes…
Nanostructured Ni-Co Alloy Electrodes Fabrication and Characterization for both Hydrogen and Oxygen Evolution Reaction in Alkaline Electrolyzer
Sun and wind as power sources are becoming more and more relevant owing to the progressive abandoning of the fossil fuels [1,2]. Additionally, worldwide public authorities are encouraging the use of renewable energies by promoting laws and guidelines [3,4]. In this scenario, a fundamental role can play hydrogen that besides being a valuable energy carrier, it can also act as a storage medium to balance the discontinuity affecting the renewable energy sources production [5]. As a consequence, cheap and abundant availability of hydrogen is crucial. Electrochemical water splitting is likely one of the most valuable technique to produce hydrogen because the process is environmentally friendly b…
Amorphous Silicon Nanotubes via Galvanic Displacement Deposition
Amorphous silicon nanotubes were grown in a single step into a polycarbonate membrane by a galvanic displacement reaction conducted in aqueous solution. In order to optimize the process, a specifically designed galvanic cell was used. SEM images, after polycarbonate dissolution, showed interconnected nanotube bundles with an average length of 18 μm and wall thickness of 38 nm.The deposited silicon was revealed by EDS analysis, whilst X-ray diffraction and Raman spectroscopy showed that nanotubes have an amorphous structure. Silicon nanotubes were also characterized by photo-electrochemical measurements that showed n-type conductivity and optical gap of ~1.6 eV. Keywords: Silicon nanotubes, …
Reagent free electrochemical-based detection of silver ions at interdigitated microelectrodes using in-situ pH control
Abstract Herein we report on the development of an electrochemical sensor for silver ions detection in tap water using anodic sweep voltammetry with in-situ pH control; enabled by closely spaced interdigitated electrode arrays. The in-situ pH control approach allowed the pH of a test solution to be tailored to pH 3 (experimentally determined as the optimal pH) by applying 1.65 V to a protonator electrode with the subsequent production of protons, arising from water electrolysis, dropping the local pH value. Using this approach, an initial proof-of-concept study for silver detection in sodium acetate was undertaken where 1.25 V was applied during deposition (to compensate for oxygen producti…
Silver based sensors from CD for chloride ions detection
This preliminary work shows a new and innovative way to produce silver based electrodes from compact discs and its application towards the detection of chloride ions. A complete sensor was obtained from the compact discs with working, reference and counter electrode made of silver. Chloride ions were detected by exploiting the high affinity of silver with this anion to produce silver chloride. This electrochemical oxidation of silver can be monitored by using an electrochemical technique such as linear scan voltammetry. Indeed, during linear scan voltammetry the oxidation of silver to silver chloride lead to a peak current that increases linearly with chloride concentration. Using this tech…
Template electrodeposition and characterization of nanostructured Pb as a negative electrode for lead-acid battery
Abstract Despite Lead Acid Battery (LAB) is the oldest electrochemical energy storage system, diffusion in the emerging sectors of technological interest is inhibited by its drawbacks. The principal ones are low energy density and negative plate sulphating on high rate discharging. In this work, it is shown the possibility of overcoming such drawbacks by using nanostructured lead as a negative electrode. Lead nanowires (NWs) were fabricated by electrochemical deposition in template, which is an easy, cheap, and easily scalable process. Their morphology and crystal structure have been characterized by electron microscopy and X-ray diffraction, respectively. An electrochemical cell simulating…
Metodo per la realizzazione di sensori elettrochimici con materiali recuperati da dispositivi di memorizzazione di scarto e sensore elettrochimico ottenibile con tale metodo
Metodo per la realizzazione di sensori elettrochimici con materiali recuperati da dispositivi di memorizzazione di scarto, quali CD e DVD
Copper and Palladium NWs for Hydrogen Peroxide detection
H2O2 is a wide used chemical in different field, like in paper and textile industries and pharmaceutical applications. Furthermore, H2O2 concentration in human body is related to glucose concentration because the reaction between glucose and glucosidase produce hydrogen peroxide [1] . Moreover, is used as a biomarker of oxidative stress, being an oxidative specie [2] . For all these reasons, researcher all over the world are working to develop new and novel strategies for in situ, non-invasive and fast detection of this chemical. One of these fields concern the electrochemical sensors, that are sensors with an electrical (current, potential, impedance) output. The surface area the electrode…
Electrochemical deposition of CZTS thin films on flexible substrate
Abstract In this work, we report some preliminary results concerning the fabrication of quaternary semiconductor Cu2ZnSnS4 (CZTS) thin films on a flexible substrate through the simultaneous electrodeposition of elements having different standard electrochemical potentials. CZTS thin films were obtained by potentiostatic deposition from aqueous baths at room temperature and under N2 atmosphere, varying bath composition. Chemical composition and structure of the electrodeposited films were evaluated by EDS, SEM, RAMAN and XRD. Preliminary results on the photoelectrochemical behaviour of the films will be also presented.
Nanostructured alloys for energy devices
Performance of Lead-Acid Batteries with Nanostructured Electrodes at Different Temperature
In this work we present innovative lead-acid batteries with nanostructured electrodes, which are cycled in a wide range of temperatures typically of lead-acid commercial batteries (EN 61427-1: 2013). In comparison to parameters usually used to commercial batteries, much more stressful conditions in terms of cut-off, charge/discharge rate and discharge were imposed.
Electrochemical deposition of Ag2Se nanostructures
Abstract AgSe based nanostructures (nanowires or nanotubes) were obtained by electrodeposition. A systematic investigation was carried out, varying concentration of the precursors, pH of the electrolytic solution, ligands, and deposition mode, to study the effect of all these parameters on the growth of nanostructures. Nanostructure morphology depends also on the type of metal that was used as support, due to the secondary reaction of hydrogen evolution. On Ni support, the H2 evolution reaction led to formation of only nanotubes, while on copper substrate also nanowires were obtained. Composition of nanostructures depends strongly on solution pH. X-ray diffraction and Raman spectroscopy sho…
High-performance of PbO2 nanowire electrodes for lead-acid battery
Abstract PbO2 nanowires were obtained by template electrodeposition in polycarbonate membranes and tested as positive electrode for lead-acid battery. Nanowires were grown on the same material acting as current collector that was electrodeposited too. The nanostructured electrodes were assembled in a zero-gap configuration using commercial negative plate and separator. Cell performance was tested by galvanostatic charge/discharge cycles in a 5 M H2SO4 aqueous electrolyte. PbO2 nanostructured electrodes were able to deliver at 1C rate an almost constant capacity of about 190 mAh g−1 (85% of active material utilization), close to the theoretical value (224 mAh g−1). The nanowire array provide…
Amorphous silicon nanotubes
In the following, the attention will be focused on the silicon nanotube (SiNTs) that is a highly desired form of silicon for its fundamental role in the miniaturization trend of the electronic devices. After a description of the properties and applications of SiNTs and their fabrication methods, the attention will be focused on chemical vapour deposition (CVD) template synthesis that is the most usual synthetic method for this material. Then, galvanic template synthesis will be described as a general method for the fabrication of different metals and oxides nanostructures, therefore the use of this technique for synthesizing SiNTs will be detailed. Characterization methods will be also desc…
Optimization of Electrodeposited Nickel-Zinc Alloys for Alkaline Electrolyzer with Nanostructured Electrodes
It is common opinion that hydrogen will become increasingly important over time. However, many research efforts still need to be made to develop efficient, low-cost and carbon-free hydrogen production. In this context, electrolysers will play a key role, but it is necessary to develop efficient and low-cost electrode/electrocatalyst materials. In this work, Nickel-Zinc alloy electrodes with nanowires morphology were investigated as cathode for alkaline electrolyzer. Electrodes were obtained by the simple method of template electrosynthesis that is also inexpensive and scalable. Nanostructured electrodes were analysed by morphological and chemical analyses. The nanowires composition is depen…
Metodo ed apparato per la produzione di nanowires metallici, nonché nanowires ottenibili mediante tale metodo
CIGS THIN FILM BY ONE-STEP ELECTRODEPOSITION FOR SOLAR CELLS
In this work, we present a cost-effective technique to produce CIGS thin films for solar cells by means of a single-step electrodeposition. In fact, electrodeposition is known as an easy technique for building low cost materials for photovoltaic device processing. Morphological, structural and optical characterization of these films has been performed.
Fabrication of CZTSe/CIGS Nanowire Arrays by One-Step Electrodeposition for Solar-Cell Application
The paper reports some preliminary results concerning the manufacturing process of CuZnSnSe (CZTSe) and CuInGaSe (CIGS) nanowire arrays obtained by one-step electrodeposition for p-n junction fabrication. CZTSe nanowires were obtained through electrodeposition in a polycarbonate membrane by applying a rectangular pulsed current, while their morphology was optimized by appropriately setting the potential and the electrolyte composition. The electrochemical parameters, including pH and composition of the solution, were optimized to obtain a mechanically stable array of nanowires. The samples were characterized by scanning electron microscopy, Raman spectroscopy, and energy-dispersion spectros…
Raman spectroscopy of lead dioxide nanowires
Pd-NWs ordered arrays for electrochemical sensing of H2O2
In this work, we present the performance of nanostructured array of Pd (Pd-NWs) for electrochemical sensors of hydrogen peroxide. Hydrogen peroxide is widely used in several fields, because to its oxidizing and reducing properties, like for treatment of waste water, paper and contaminated soils, as reagent in many chemical industries or like rocket propellant [1]. Furthermore, its presence or absence may be connected with many neurological deseases or/and with cancer [2].Today the most used methods for detection of that chemical are IR spectroscopy, spectrophotometry, fluorimetry, chemioluminescence and redox titration. However these methods are often uneconomical, have very high detection …
Effective Removal and Mineralization of 8-Hydroxyquinoline-5-sulfonic Acid through a Pressurized Electro-Fenton-like Process with Ni−Cu−Al Layered Double Hydroxide
Ni−Cu−Al layered double hydroxide (Ni−Cu−Al LDH) was proposed as an electro‐Fenton‐like catalyst for 8‐hydroxyquinoline‐5‐sulfonic acid (8‐HQS) removal in water. The properties of the prepared catalysts were characterized by using X‐ray, SEM and EDAX analyses. The effect of numerous operative parameters on the removal of 8‐HQS and total organic carbon (TOC) was studied. Very high level removal of both 8‐HQS and TOC (87 and 79 %, respectively) were obtained by using a pressurized electro‐Fenton‐like process (PrEFL‐LDH) at P=10 bars, using a Ti/IrO2‐Ta2O5 anode for 6 h. The process presented good performances in a large range of pH (3–10) and gave better removals of 8‐HQS and TOC with respect…
Ni-Based Alloy Nanostructured Electrodes for Alkaline Electrolyzers
In water alkaline electrolyzer field, the development of Nickel-based nanostructured electrode is one of the possible ways to improve the water electrolysis efficiency
Fabrication of Nanostructured Ni and Ni-IrO2 electrodes for wateralkaline electrolyzer
In the field of water-alkaline electrolyzer, the develop of nanoporous nickel electrodes with low cost and high electrocatalysis efficiency is one of the potential approaches to increase their performance [1]. To obtain nanostructured electrodes, a facile approach is that of template electrosynthesis. With this method we have obtained electrodes made of nanowires of Ni that have a very high surface area. These electrode were obtained by a two-step procedure allowing to obtain an ordered array of Ni nanowires that completely covering the surface of current collector made of the same material. Besides, by amperostatic deposition we have covered these electrode with nanoparticles of IrO2 elect…
Fabbricazione elettrochimica e caratterizzazione di materiali nanostrutturati
Synthesis and characterization of a new set of protic ionic liquids
High-performing Sn-Co nanowire electrodes as anodes for lithium-ion batteries
Abstract The preparation of Sn 2 Co 3 nanowire arrays (NWs) electrogrown inside the channels of polycarbonate membranes and their characterization as anodes for Li-ion batteries both in half-cell vs. Li and in battery configuration are reported. The Sn 2 Co 3 NW electrodes tested by deep galvanostatic charge/discharge cycles in ethylene carbonate-dimethylcarbonate (1:1) – LiPF 6 1 M displayed 80% capacity retention after 200 cycles at C/2 and 30 °C, and a high charge and discharge rate capability at C-rate from C/3 (0.33 A/g) to 10C (10 A/g) at 30° and 10 °C. Electrodes with the highest alloy loading delivered up to 0.6 mAh cm −2 at C/2. The performance of these electrodes in battery config…
Characterization of Thin Film Cig(S,Se)2 Submodules Using Solar Simulator and Laser Beam Induced Current Techniques
In this work, the electrical and optical characterization of CIG(S,Se)2 sub-modules using both a solar simulator equipment and the Laser Beam Induced Current (LBIC) technique is presented. By using the solar simulator and a proper set-up, the electrical parameters of the modules at varying irradiance and temperatures are determined. In addition, the LBIC measurements are carried out to analyze the 2D photocurrent uniformity of the modules at two different wavelengths. Dispersion values of extracted parameters can be very useful for practically tuning the modelling stage at device/module level.
Dispositivo elettrolizzatore migliorato
Un dispositivo di elettrolizzatore migliorato per la produzione elettrolitica di idrogeno allo stato gassoso
Template electrosynthesis of aligned Cu2O nanowires
Abstract Large arrays of aligned copper oxide nanowires were produced by electrodeposition, using anodic alumina membranes as template. We have studied the effect of two fundamental parameters involved in fabrication process: potential perturbation and bath composition. Performing electrodeposition from a copper acetate/sodium acetate bath (pH 6.5), we found that chemical composition of nanowires varied in dependence on the shape of the applied potential perturbation: pure copper oxide nanowires were produced by pulsed potential, whilst continuous electrodeposition resulted in a co-deposition of Cu and Cu 2 O. In a copper lactate bath, buffered at pH 10, the shape of perturbation did not in…
Fabrication of metal nano-structures using anodic alumina membranes grown in phosphoric acid solution: Tailoring template morphology
Abstract The influence of experimental parameters on the morphology of the porous structure and on the formation kinetics has been investigated for anodic alumina membranes (AAM) grown in aqueous H 3 PO 4 at 160 V. It was found that pore aspect ratio and membrane porosity on the solution-side surface are influenced by tensiostatic charge, bath temperature and the presence of Al 3+ ions in solution. Morphological and kinetic data, recorded in different conditions, give useful information on the growth mechanism of pore channels in phosphoric acid solution. Nickel nano-structures have been fabricated using AAM as template. Electroless deposition, performed by adding the reducing agent to a su…
Novel procedure for the template synthesis of metal nanostructures
In this work we describe a novel method for the fabrication of a regular and uniform array of Cu nanowires into anodic alumina membranes. It is based on galvanic contact between the metal sputtered film covering the bottom of template and a less noble metal. The growth rate was estimated as function of the immersion time. Nanowires with aspect ratio from 12 to 286 were obtained by adjusting the deposition time. Copper nanowires were found to be polycrystalline with an average crystalline size of about 40 nm. This procedure can be applied for the preparation of a wide range of metallic nanostructures and it can be easily scaled up for industrial processing. Keywords: Displacement deposition,…
Energy consumption model of aerial urban logistic infrastructures
In the last decade, logistic systems based on small aerial vehicles (drones) have become attractive for urban delivery operations as a sustainable alternative to ground vehicles because they are not affected by the congestion of the road network, thus allowing for faster and more reliable services. Aerial logistic systems, however, require a substantially different approach to operations management and need specifically designed supportive infrastructures. While the research on urban aerial delivery mostly focuses on the optimization vehicle operations, the appropriate design of supportive infrastructures is seldom considered. This paper focuses on the energy efficiency of aerial logistic s…
Lead Electrode, Method for its Manufacturing and Accumulator Comprising the Electrode
Electrodeposition from molybdate aqueous solutions: a preliminary study
The electrochemistry of molybdenum (Mo) and its oxides is very important for several applications in electrocatalysis,batteries,sensors and in particular for CIGS-based solar cells,where metal Mo is used as back contact.Properties and the fabrication method of Mo films are of fundamental importance,because they could induce significant changes in solar cell performances.The most important issues in the electrochemical behaviour of Mo are the nature and stability of its surface oxides,which are strongly dependent on deposition bath pH.Ivanova et al. (2006) reported that it is possible to accomplish the cathodic reduction of molybdate ions to metallic Mo from electrolytes containing HF.The ad…
Galvanic Deposition of Calcium Phosphate/Bioglass Composite Coating on AISI 316L
Calcium phosphate/Bioglass composite coatings on AISI 316L were investigated with regard to their potential role as a beneficial coating for orthopedic implants. These coatings were realized by the galvanic co-deposition of calcium phosphate compounds and Bioglass particles. A different amount of Bioglass 45S5 was used to study its effect on the performance of the composite coatings. The morphology and chemical composition of the coatings were investigated before and after their aging in simulated body fluid. The coatings uniformly covered the AISI 316L substrate and consisted of a brushite and hydroxyapatite mixture. Both phases were detected using X-ray diffraction and Raman spectroscopy.…
Sn-Co nanowire-based anodes for lithium-ion batteries
The demand of improvement in lithium-ion battery technology in terms of specific capacity and safety has stimulated the search for anode materials alternative to graphite. Among them, tin-based materials have been widely studied because tin can intercalate lithium up to atomic ratio Li/Sn of 4.4 to deliver a impressive specific capacity of 993 mAhg−1 (while graphite gives 372 mAhg−1). Unfortunately the high volume change of about 300%, which is related to the insertion/removal of lithium, causes the alloy pulverization and loss of electric contact that causes a poor cycle life. The synthesis of nanometric materials, intermetallic compounds and carbon composites are strategies that have been…
CIGS Thin Film by One-Step Electrodeposition Deposition for Solar Cells
Electrochemical deposition of CIGS on electropolished Mo
Method for Producing an Electrode with Nanometric Structure and Electrode with Nanometric Stucture
Optimization of urban delivery systems based on electric assisted cargo bikes with modular battery size, taking into account the service requirements and the specific operational context
The implementation of new forms of urban mobility is a fundamental challenge for improving the performance of city logistic systems in terms of efficiency and sustainability. For such purposes, the exploitation of electric vehicles is currently being investigated as an alternative to traditional internal combustion engines. In particular, the employment of lightweight electric cargo bikes is seen as an attractive possibility for designing improved city distribution systems. Such vehicles, however, present substantial limitations related to their endurance, speed, power, and recharging times; therefore, their configuration must be optimized considering the actual operational context and the …
Performance analysis of nanostructured PbO2 electrodes in lead-acid batteries
Investigation of Annealing Conditions on Electrochemically Deposited CZTS Film on Flexible Molybdenum Foil
In thiswork, the electrodeposition of Cu2ZnSnS4 thin films on molybdenum thin foilwas reported. In order to guarantee co-deposition of elements with different standard electrochemical potential, an aqueous electrolyte added with ligand agents was used. I addition, deposition parameters were carefully chosen, in order to ensure good quality and suitable composition of the films. The deposited films were sulfurized in controlled atmosphere at 580?C, scrutinizing the influence of the annealing conditions on the features of the films. Structure, morphology and composition were investigated by XRD SEM, EDS and Raman spectroscopy. Results reveal the growth of good quality films, with a uniform mo…
NANOWIRE FABRICATION BY METAL DISPLACEMENT DEPOSITION INTO ANODIC ALUMINA MEMBRANES TEMPLATES
Thin Films of Semiconductors for Flexible Solar Cells: Electrochemical Deposition and Characterization
A nanostructured sensor of hydrogen peroxide
Abstract A nanostructured electrochemical sensor of hydrogen peroxide was fabricated growing self-standing Pd nanowires (Pd NWs) into polycarbonate (PC) membranes through a simple metal galvanic deposition. Conditions of deposition were adjusted in order to attain 2–5 μm long Pd wires. Characterization of Pd-NWs was performed by scanning electrode microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Properties of the nanostructured sensor were studied by cyclic voltammetry and chronoamperometry in phosphate buffer—ethanol solution. Addition of pure ethanol to the test solution was essential in order to increase wettability of the nanostructures. Sensing features were comp…
One-Step Electrodeposition of CZTS for Solar Cell Absorber Layer
CZTS thin films were obtained by one-step electrochemical deposition from aqueoussolution at room temperature. Films were deposited on two different substrates, ITOon PET, and electropolished Mo. Differently from previous studies focusing exclu‐sively on the formation of kesterite (Cu4ZnSnS4), here, the synthesis of a phase withthis exact composition was not considered as the unique objective. Really, startingfrom different baths, amorphous semiconducting layers containing copper–zinc–tin–sulphur with atomic fraction Cu0.592Zn0.124Sn0.063S0.221 and Cu0.415Zn0.061Sn0.349S0.175, werepotentiostatically deposited. Due to the amorphous nature, it was not possible to de‐tect if one or more phases…
DOPAMINE ELECTROCHEMICAL SENSOR BASED ON REDUCED GRAPHENE OXIDE AND METAL NANOPARTICLES
Dopamine (DA) is one of the most important neurotransmitters released from the brain, and is involved in many different biological processes. This neurotransmitter influences the processes that involve memory, sleep, mood, learning, and so on. Besides, in the last years, dopamine concentration in human body fluids has been related to some neurodegenerative pathologies, such as Parkinson and Alzheimer’s diseases [1]. It is well known that these pathologies are due to the formation of amyloids plaques that block part of the brain. Many literature data reports that DAergic neurons (areas of midbrain where DA is synthesized) shows a different activity when amyloid plaques are present with a con…
Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat
Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of co…
Anodic Alumina Membranes: From Electrochemical Growth to Use as Template for Fabrication of Nanostructured Electrodes
The great success of anodic alumina membranes is due to their morphological features coupled to both thermal and chemical stability. The electrochemical fabrication allows accurate control of the porous structure: in fact, the membrane morphological characteristics (pore length, pore diameter and cell density) can be controlled by adjusting the anodizing parameters (bath, temperature, voltage and time). This article deals with both the fabrication and use of anodic alumina membranes. In particular, we will show the specific role of the addition of aluminum ions to phosphoric acid-based anodizing solution in modifying the morphology of anodic alumina membranes. Anodic alumina membranes were …
Wearable sensor for real-time monitoring of oxidative stress
CuInSe2/Zn(S,O,OH) junction by electrochemical and chemical route for photovoltaic applications (GE 2014)
Electrodeposition is a convenient technique for the development of low cost materials for photovoltaic (PV) device processing. Using a single step electrodeposition route, several groups have fabricated CIS (CuInSe) and CIGS (CuInGaSe) films. One of the most important requirements for successful application of one-step electrodeposition film formation is the ability to control composition of the deposited films and to develop polycrystalline microstructures with a low surface roughness and high sintered density.
Wearable sensor for real-time monitoring of hydrogen peroxide in simulated breath
Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors
Abstract A sensitive and selective electrochemical sensor, based on reduced graphene oxide and gold nanoparticles obtained by simple co-electrodeposition, was developed for the detection of uric acid and ascorbic acid. Because of the electrochemical oxidation of both uric and ascorbic acid depending on the pH, the sensor performances were studied at different pH values. Excellent results were obtained for uric acid detection in a linear range from 10 to 500 µmol dm−3 with a sensitivity of 0.31 µA cm−2 µM−1. A limit of detection and quantification of 3.6 µM and 10.95 µmol dm−3, respectively, was calculated. Sensors showed good selectivity toward different interfering species present in the m…
Fabrication and characterization of nanostructured materials
Influence Of The Electrical Parameters On The Fabrication Of Copper Nanowires Into Anodic Alumina Templates
Abstract Metallic copper nanowires have been grown into the pores of alumina membranes by electrodeposition from an aqueous solution containing CuSO 4 . and H 3 BO 3 at pH 3. In order to study the influence of the electrical parameters on growth and structure of nanowires, different deposition potentials (both in the region where hydrogen evolution reaction is allowed or not) and voltage perturbation modes (constant potential or unipolar pulsed depositions) were applied. In all cases, pure polycrystalline Cu nanowires were fabricated into template pores, having lengths increasing with the total deposition time. These nanowires were self-standing, because they retain their vertical orientati…
SPEEDAM 2010 Poster REC0616: An electrochemical route towards the fabrication of nanostructured semiconductor solar cells
Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor
Immunoglobulin G (IgG), a type of antibody, represents approximately 75% of serum antibodies in humans, and is the most common type of antibody found in blood circulation. Consequently, the development of simple, fast and reliable systems for IgG detection, which can be achieved using electrochemical sandwich-type immunosensors, is of considerable interest. In this study we have developed an immunosensor for human (H)-IgG using an inexpensive and very simple fabrication method based on ZnO nanorods (NRs) obtained through the electrodeposition of ZnO. The ZnO NRs were treated by electrodepositing a layer of reduced graphene oxide (rGO) to ensure an easy immobilization of the antibodies. On I…
Fabrication and Characterization of Different Nanostructures
Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes.
Abstract Dopamine is an important neurotransmitter involved in many human biological processes as well as in different neurodegenerative diseases. Monitoring the concentration of dopamine in biological fluids, i.e., blood and urine is an effective way of accelerating the early diagnosis of these types of diseases. Electrochemical sensors are an ideal choice for real-time screening of dopamine as they can achieve fast, portable inexpensive and accurate measurements. In this work, we present electrochemical dopamine sensors based on reduced graphene oxide coupled with Au or Pt nanoparticles. Sensors were developed by co-electrodeposition onto a flexible substrate, and a systematic investigati…
Anodic alumina membranes: from electrochemical growth to use as template for nanostructure fabrication
Template Electrodeposition of CIS and CIGS Nanowires for Application in Solar Cells
Fabrication and Photoelectrochemical Behavior of Ordered CIGS Nanowire Arrays for Application in Solar Cells
In this work, we report some preliminary results concerning the fabrication of quaternary copper, indium, gallium, and selenium CIGS nanowires that were grown inside the channels of an anodic alumina membrane by one-step potentiostatic deposition at different applied potentials and room temperature. A tunable nanowire composition was achieved through a manipulation of the applied potential and electrolyte composition. X-ray diffraction analysis showed that nanowires, whose chemical composition was determined by energy-dispersive spectroscopy analysis, were amorphous. A composition of Cu0.203In0.153Ga0.131Se0.513, very close to the stoichiometric value, was obtained. These nanostructures wer…
Nanostructured binary tin alloy fabrication
Nanostructured Electrochemical Devices for Sensing, Energy Conversion and Storage
Nanostructured materials are attracting growing interest for improving performance of devices and systems of large technological interest. In this work, the principal results about the use of nanostructured materials in the field of electrochemical energy storage, electrochemical water splitting, and electrochemical sensing are presented. Nanostructures were fabricated with two different techniques. One of these was the electrodeposition of the desired material inside the channels of a porous support acting as template. The other one was based on displacement reaction induced by galvanic contact between metals with different electrochemical nobility. In the present work, a commercial polyca…
Synthesis of self-standing Pd nanowires via galvanic displacement deposition
This work shows that it is possible to obtain self-standing Pd nanowires into anodic alumina membranes by a simple metal displacement deposition. By using a proper arrangement, specifically designed in order to optimize the process, polycrystalline Pd nanowires were deposited from a solution containing Pd(NH3)4(NO3)2 as precursor. Morphological analysis showed the formation of perfectly aligned nanowires with a uniform diameter throughout the entire length. This last parameter was controlled by both the deposition time and the ratio between the anodic area (active metal) and the cathodic area (pore bottom). Keywords: Displacement deposition, Template synthesis, Palladium nanowires, Alumina …
Nanowire Ordered Arrays for Electrochemical Sensing of H2O2
Today, electrochemical sensors are considered very interesting in comparison to conventional techniques because they are very adaptable, cheap, have very low limit of detection and low detection time. The most used electrochemical technique is the amperometry . In amperometric sensors, a fixed potential is applied to the electrochemical cell, and a corresponding current, due to a reduction or oxidation reaction, is then obtained. This current it can be correlated with the bulk concentration of the detecting species (the solute) such as H2O2. Hydrogen peroxide is an essential mediator in food, pharmaceutical, clinical, industrial, and environmental analyses therefore, it is of great importan…
Electrochemical detection of chloride ions using Ag-based electrodes obtained from compact disc
Abstract In this work electrochemical sensors fabricated from compact disc material (waste or new) are used to quantify chloride ions in different types of samples. All three electrodes, working, counter, and pseudo-reference electrodes, were fabricated from the compact disc and directly used. Different parameters were studied in order to demonstrate the possibility of using this waste material for efficient and low-cost electrochemical sensors. Chloride sensing performance was evaluated using linear scan voltammetry as the detection technique. A sensitivity of 0.174 mA mM−1 cm−2 with a limit of detection of 20 μM and excellent selectivity against many interferents was observed. Selectivity…
ULTRAFAST LEAD ACID BATTERIES USING NANOSTRUCTURED ELECTRODES
Studio del processo di recupero di membrane di policarbonato
Electrochemical deposition of different semiconductors for application in solar cells
Influence of electrodeposition techniques on Ni nanostructures
Abstract Different Ni nanostructure arrays were fabricated by pulsed electrodeposition from a Watts bath inside the pores of anodic alumina membrane (AAM) templates. Under a trapezoidal waveform of potential, consisting of fast linear sweeps between 0 and −3 V (SCE) interleaved by delay times at 0 (10 s) and −3 V (0.1 s), Ni nanowires were grown. The rate of nanowires growth was constant up to 60 min of deposition. For longer times, the growth of nanowires was not uniform, and after about 180 min some nanowires reached the template surface exposed to the electrolyte. Under square potential pulses between the same potentials (pulse length 1 s), nanotubes of Ni are obtained. Morphological ana…
Electrodeposition and characterization of CZTS for solar cells
Fabrications of Nanostructures And Nano-Structured Devices Using Electrochemical Methods
Electrochemical deposition of CIGS on electropolished Mo
Lead Nanowires for Microaccumulators Obtained Through Indirect Electrochemical Template Deposition
Metallic lead nanowires were deposited within pores of commercial anodic alumina membranes having an average pore diameter of 210 nm. "Direct" electrodeposition was attempted from 0.1 M Pb(NO 3 ) 2 aqueous solution with a variable concentration of H 3 BO 3 as a chelating agent, but it gave unsatisfactory results. An "indirect" two-step deposition procedure was then adopted, consisting of the anodic electrodeposition of α-PbO 2 nanowires, followed by their in situ reduction to metallic lead. Both these processes occurred at a high rate so that the indirect method led to a complete template pore filling with pure polycrystalline Pb in short times and with a high current efficiency.
Sn-Co Nanowires: High-Performing Electrodes as Anodes for Lithium-ion Batteries
Metal displacement deposition: a new method to grow amorphous silicon nanotubes
Deposition and characterization of Hydroxyapatite-Chitosan coatings on 304 SS for biomedical devices
During the last years biomaterials have been largely investigated in order to perform and improve biomedical devices. As regards orthopedic field, the most common equipment used (such as implants, bone grafts or screws) are constituted by metallic materials (steel and titanium alloys), characterized by low/medium resistance to corrosion and low osteointegration ability. Furthermore, these factors could produce local inflammations of the tissues surrounding the implants, increasing kinetics of corrosion phenomena. Scientific community has focused the attention on biocoatings interposed between metal and aggressive environment in order to inhibit corrosion. Furthermore, these coatings are abl…
Metodo e Kit per il recupero di piombo metallico da componenti di un accumulatore esausto al piombo-acido
il metodo consente di ripristinare le piastre presenti nelle batterie al piombo acido esauste per recuperare il piombo presente e per riutilizzarle direttamente in nuove batterie
Nanostructured Electrodes For Biosensing: An Innovative Technology With Huge Potential Applications
Monitoring Risk Factors and Improving Adherence to Therapy in Patients With Chronic Kidney Disease (Smit-CKD Project): Pilot Observational Study
Background Chronic kidney disease is a major public health issue, with about 13% of the general adult population and 30% of the elderly affected. Patients in the last stage of this disease have an almost uniquely high risk of death and cardiovascular events, with reduced adherence to therapy representing an additional risk factor for cardiovascular morbidity and mortality. Considering the increased penetration of mobile phones, a mobile app could educate patients to autonomously monitor cardiorenal risk factors. Objective With this background in mind, we developed an integrated system of a server and app with the aim of improving self-monitoring of cardiovascular and renal risk factors and…
Semiconductors: Growth and Characterization
Semiconducting materials are widely used in several applications such as photonics, photovoltaics, electronics and thermoelectrics, because of their optical and electro-optical features. The fundamental and technological importance of these materials is due to the unique physical and chemical properties. Over the years, numerous methods have been developed for the synthesis of high efficient semiconductors. Besides, a variety of approach and characterization methods have been used to study the numerous and fascinating properties of the semiconducting materials. This book collects new developments about semiconductors, from the fundamental issues to the synthesis and applications. Special at…