0000000001327910

AUTHOR

Yue Zhou-kangas

showing 6 related works from this author

The price of multiobjective robustness : Analyzing solution sets to uncertain multiobjective problems

2021

Defining and finding robust efficient solutions to uncertain multiobjective optimization problems has been an issue of growing interest recently. Different concepts have been published defining what a “robust efficient” solution is. Each of these concepts leads to a different set of solutions, but it is difficult to visualize and understand the differences between these sets. In this paper we develop an approach for comparing such sets of robust efficient solutions, namely we analyze their outcomes under the nominal scenario and in the worst case using the upper set-less order from set-valued optimization. Analyzing the set of nominal efficient solutions, the set of minmax robust efficient …

Mathematical optimizationInformation Systems and ManagementGeneral Computer ScienceComputer sciencemultiobjective robust optimizationSolution setpäätöksentukijärjestelmätManagement Science and Operations ResearchMinimaxmonitavoiteoptimointiepävarmuusIndustrial and Manufacturing Engineeringdecision makingRobustness (computer science)Modeling and Simulationuncertaintyprice of robustness
researchProduct

Interactive Multiobjective Robust Optimization with NIMBUS

2018

In this paper, we introduce the MuRO-NIMBUS method for solving multiobjective optimization problems with uncertain parameters. The concept of set-based minmax robust Pareto optimality is utilized to tackle the uncertainty in the problems. We separate the solution process into two stages: the pre-decision making stage and the decision making stage. We consider the decision maker’s preferences in the nominal case, i.e., with the most typical or undisturbed values of the uncertain parameters. At the same time, the decision maker is informed about the objective function values in the worst case to support her/him to make an informed decision. To help the decision maker to understand the behavio…

Mathematical optimization021103 operations researchComputer sciencepareto-tehokkuuspäätöksenteko0211 other engineering and technologiesPareto principlemultiple criteria decision makingRobust optimization02 engineering and technologyrobustnessinteractive methodsDecision makerMinimaxTwo stagesrobust Pareto optimalitymonitavoiteoptimointiepävarmuusMultiobjective optimization problemRobustness (computer science)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing
researchProduct

A Simple Indicator Based Evolutionary Algorithm for Set-Based Minmax Robustness

2018

For multiobjective optimization problems with uncertain parameters in the objective functions, different variants of minmax robustness concepts have been defined in the literature. The idea of minmax robustness is to optimize in the worst case such that the solutions have the best objective function values even when the worst case happens. However, the computation of the minmax robust Pareto optimal solutions remains challenging. This paper proposes a simple indicator based evolutionary algorithm for robustness (SIBEA-R) to address this challenge by computing a set of non-dominated set-based minmax robust solutions. In SIBEA-R, we consider the set of objective function values in the worst c…

Mathematical optimization021103 operations researchSIBEA uncertaintyComputer sciencepareto-tehokkuusComputation0211 other engineering and technologiesEvolutionary algorithm02 engineering and technologyMinimaxmonitavoiteoptimointihypervolumeminmax robustRobustness (computer science)set-based dominancealgoritmit0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingPareto optimal solutions
researchProduct

Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality

2018

As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to control the loss in the objective function values in the most typical scenario for gaining in robustness. In this paper, we develop a lightly robust interactive multiobjective optimization method, LiRoMo, to support a decision maker to find a most preferred lightly robust efficient solution with a good balance between robustness and the objective function values in the most typical scenario. In LiRoMo, we formulate a lightly robust subproblem utilizing an achievement scalarizi…

Mathematical optimizationdecision supportOptimization problemmultiobjective robust optimizationComputer sciencepäätöksenteko0211 other engineering and technologies02 engineering and technologyManagement Science and Operations ResearchMulti-objective optimizationoptimointiRobustness (computer science)0502 economics and business050210 logistics & transportation021103 operations research05 social scienceslight robust efficiencyRobust optimizationinteractive methodshandling uncertaintyDecision makerMinimaxmonitavoiteoptimointiepävarmuusVisualizationMultiobjective optimization problemtrade-off between robustness and qualityBusiness Management and Accounting (miscellaneous)OR Spectrum
researchProduct

Solving multiobjective optimization problems with decision uncertainty: an interactive approach

2018

We propose an interactive approach to support a decision maker to find a most preferred robust solution to multiobjective optimization problems with decision uncertainty. A new robustness measure that is understandable for the decision maker is incorporated as an additional objective in the problem formulation. The proposed interactive approach utilizes elements of the synchronous NIMBUS method and is aimed at supporting the decision maker to consider the objective function values and the robustness of a solution simultaneously. In the interactive approach, we offer different alternatives for the decision maker to express her/his preferences related to the robustness of a solution. To conso…

Economics and EconometricsMathematical optimization050208 financerobust solutionsComputer science05 social sciencesmultiple criteria decision makinginteractive methodsDecision makerNIMBUSmonitavoiteoptimointiVisualizationMultiobjective optimization problemRobustness (computer science)0502 economics and businesshandling uncertaintiesrobustness measureBusiness and International Management050203 business & managementJournal of Business Economics
researchProduct

Interactive methods for multiobjective robust optimization

2018

Practical optimization problems usually have multiple objectives, and they also involve uncertainty from different sources. Various robustness concepts have been proposed to handle multiple objectives and the involved uncertainty simultaneously. However, the practical applicability of the proposed concepts in decision making has not been widely studied in the literature. Developing solution methods to support a decision maker to find a most preferred robust solution is an even more rarely studied topic. Thus, we focus on two goals in this thesis including 1) analyzing the practical applicability of different robustness concepts in decision making and 2) developing interactive methods for sup…

optimointipareto-tehokkuusmultiobjective optimizationpäätöksentukijärjestelmätrobustnessdecision-makinginteractive methodsuncertaintymonitavoiteoptimointiepävarmuus
researchProduct