0000000001328296

AUTHOR

L Magazzù

showing 1 related works from this author

Nonlinear relaxation in quantum and mesoscopic systems

2013

The nonlinear relaxation of three mesoscopic and quantum systems are investigated. Specifically we study the nonlinear relaxation in: (i) a long Josephson junction (LJJ) driven by a non-Gaussian Lévy noise current; (ii) a metastable quantum open system driven by an external periodical driving; and (iii) the electron spin relaxation process in n-type GaAs crystals driven by a fluctuating electric field. In the first system the LJJ phase evolution is described by the perturbed sine-Gordon equation. Two well known noise induced effects are found: the noise enhanced stability and resonant activation phenomena. We investigate the mean escape time as a function of the bias current frequency, nois…

Relaxationquantum dissipative systemelectron spin relaxationMetastability; Relaxation; Mesoscopic Systems; Josephson junction; sine-Gordon; soliton; Lévy noise; quantum dissipative system; Caldeira-Leggett; discrete variable representation; electron spin relaxation; Monte Carlo;Settore FIS/03 - Fisica Della MateriaLévy noiseMesoscopic SystemMetastabilitysine-Gordondiscrete variable representationJosephson junctionsolitonMonte CarloCaldeira-Leggett
researchProduct