6533b7cefe1ef96bd1256f9e
RESEARCH PRODUCT
Elastic properties, structures and phase transitions in model colloids
Kurt BinderPeter NielabaA. RicciP. HenselerKerstin FranzraheW. StreppS. SenguptaDebasish ChaudhuriM. Lohrersubject
PhysicsPhase transitionAmplitudeCondensed matter physicsImpurityMonte Carlo methodDLVO theoryGeneral Materials ScienceParameter spaceCondensed Matter PhysicsScalingPhase diagramdescription
The nature of the melting transition for a system of hard discs with translational degrees of freedom in two spatial dimensions has been analysed by a combination of computer simulation methods and a finite size scaling technique. The behaviour of the system is consistent with the predictions of the Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY) theory. The structural and elastic properties of binary colloidal mixtures in two and three spatial dimensions are discussed as well as those of colloidal systems with quenched point impurities. Hard and soft discs in external periodic (light-) fields show rich phase diagrams including freezing and melting transitions when the density of the system is varied. Monte Carlo simulations for detailed finite size scaling analysis of various thermodynamic quantities like the order parameter, its cumulants, etc, have been used in order to map the phase diagram of the system for various values of the density and the amplitude of the external potential. For hard discs we find clear indication of a reentrant liquid phase over a significant region of the parameter space. The simulations therefore show that the system of hard discs behaves in a fashion similar to charge stabilized colloids which are known to undergo an initial freezing, followed by a remelting transition as the amplitude of the imposed modulating field produced by crossed laser beams is steadily increased. Detailed analysis of the simulation data shows several features consistent with a recent dislocation unbinding theory of laser induced melting. The differences and similarities of systems with soft potentials (DLVO, 1/r12, 1/r6) and the relation to experimental data is analysed.
year | journal | country | edition | language |
---|---|---|---|---|
2004-09-11 | Journal of Physics: Condensed Matter |