6533b7cefe1ef96bd1257283
RESEARCH PRODUCT
Retrograde neurotrophic signaling in rat retinal ganglion cells is transmitted via the ERK5 but not the ERK1/2 pathway.
Nils SchallnerChristian Van OterendorpStavros SgourisJulia BiermannWolf A. Lagrèzesubject
MaleRetinal Ganglion Cellsmedicine.medical_specialtyAgingSuperior ColliculiMAP Kinase Signaling SystemBlotting WesternRetinal ganglionRetinaRats Sprague-Dawley03 medical and health sciences0302 clinical medicineNeurotrophic factorsInternal medicinemedicineAnimalsAxonPhosphorylationMitogen-Activated Protein Kinase 7030304 developmental biologyBrain-derived neurotrophic factorMitogen-Activated Protein Kinase 10303 health sciencesRetinaMitogen-Activated Protein Kinase 3biologyChemistryBrain-Derived Neurotrophic FactorBrainAnatomyRatsmedicine.anatomical_structureEndocrinologynervous systemRetinal ganglion cellTrk receptorOptic Nerve InjuriesIntravitreal Injectionsbiology.proteinsense organsNeuroglia030217 neurology & neurosurgeryNeurotrophindescription
Purpose Neurotrophic deprivation is considered an important event in glaucomatous retinal ganglion cell (RGC) death. However, the mitogen-activated protein kinase (MAPK) pathway transmitting axonal neurotrophic signals in RGC has not been identified. We investigated the involvement of ERK5 and ERK1/2 in retrograde axonal neurotrophic signaling in rats. Methods Adult Sprague-Dawley rats were used. Retinal immunostaining for ERK5 and MEK5 was performed. Levels of total and phosphorylated ERK5 and ERK1/2 were analyzed in retinal lysate by quantitative Western blotting. The effects of age, brain-derived neurotrophic factor (BDNF) stimulation at RGC soma (intravitreal injection) or axon ending (superior colliculus [SC] injection), axonal tyrosine kinase receptor (Trk) receptor inhibition with genistein, and acute axonal damage by optic nerve transection (ONT) were investigated at time points from 24 hours to 5 days. Results ERK5 and MEK5 were present in RGCs and glial cells. Phospho-ERK5 levels increased in retina and decreased in brain with age (n = 4; P = 0.039). Phosphorylation of ERK5 but not ERK1/2 was increased or decreased by SC injection of BDNF or genistein, respectively (BDNF at 48 hours [p-ERK5: P = 0.01; p-ERK1/2: P = 0.55, n = 8]; genistein at 48 hours [p-ERK5: P = 0.01; p-ERK1/2: P = 0.5, n = 5]). ONT showed a similar trend. BDNF stimulation at the RGC soma increased both p-ERK5 and p-ERK1/2 (P = 0.035 and P = 0.032, respectively; n = 6; at 48 hours). Conclusions ERK5 is present in RGCs. Retina and brain p-ERK5 levels develop differently with age. The response of ERK5 but not ERK1/2 to BDNF stimulation or inhibition at the RGC axon ending indicates that retrograde neurotrophic signals in the rat optic nerve may be mediated by the ERK5 pathway.
year | journal | country | edition | language |
---|---|---|---|---|
2014-02-03 | Investigative ophthalmologyvisual science |