6533b7cefe1ef96bd1257ad9
RESEARCH PRODUCT
Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow
Fatih KocabasJunke ZhengQianming WangMercedes CostellGuo-qiang ChenXiaoye LiuRalph T. BöttcherZhigang LuHesham A. SadekRalph J. DeberardinisXunlei KangCheng Cheng Zhangsubject
Cell SurvivalHematopoiesis and Stem CellsImmunologyCellMice TransgenicMitochondrionBiologyBiochemistryMiceProfilinsBone MarrowCell MovementmedicineAnimalsStem Cell NicheCells CulturedHematopoietic Stem Cell MobilizationHematopoietic stem cellCell BiologyHematologyCell cycleHematopoietic Stem CellsHematopoietic Stem Cell MobilizationCell biologyMice Inbred C57BLHaematopoiesismedicine.anatomical_structureBiochemistryBone marrowStem cellCèl·lules mareGlycolysisProteïnesdescription
How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we demonstrated that the deletion of the cytoskeleton-modulating protein profilin 1 (pfn1) in hematopoietic stem cell (HSCs) led to bone marrow failure, loss of quiescence, and mobilization and apoptosis of HSCs in vivo. A switch from glycolysis to mitochondrial respiration with increased reactive oxygen species (ROS) level was also observed in HSCs on pfn1 deletion. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that the metabolism is mechanistically linked to the cell cycle quiescence of stem cells. The actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Our study provided evidence that pfn1 at least partially acts through the axis of pfn1/Gα13/EGR1 to regulate stem cell retention and metabolism in the bone marrow.
year | journal | country | edition | language |
---|---|---|---|---|
2014-01-01 | Blood |