6533b7cffe1ef96bd12582bf
RESEARCH PRODUCT
Modelling electrocatalysis of hydroquinone oxidation by nicotinamide adenine dinucleaotide coenzyme encapsulated within SBA-15 and MCM-41 mesoporous aluminosilicates
José Luis BourdelandeJosé Raúl HeranceAntonio DoménechJordi MarquetHermenegildo Garcíasubject
HydroquinoneGeneral Chemical EngineeringElectrochemistryElectrocatalystMolecular sievechemistry.chemical_compoundMCM-41Chemical engineeringchemistryElectrochemistryOrganic chemistryCyclic voltammetryMesoporous materialVoltammetrydescription
The electrochemical response of NADH associated to two mesoporous aluminosilicates, MCM-41 and SBA-15, is described upon attachment of such materials into polymer-film electrodes. The studied materials display a significant electrocatalytic activity towards the oxidation of 1,4-dihydrobenzoquinone, H2Q. Two models for describing the electrocatalytic process, based on the general theory of mediated electrocatalysis and the Lovric and Scholz formulation of the voltammetry of microparticles are discussed. Voltammetric and chronoamperometric data indicate that the electrocatalytic process involves the formation of a surface-confined NADH–H2Q adduct in the case of SBA-15, while a surface reaction/regeneration scheme prevails for MCM-41.
year | journal | country | edition | language |
---|---|---|---|---|
2006-06-01 | Electrochimica Acta |