6533b7cffe1ef96bd12583f3

RESEARCH PRODUCT

Synergetic and redundant information flow detected by unnormalized Granger causality: application to resting state fMRI

Sebastiano StramagliaLeonardo AngeliniLuca FaesGuo-rong WuDaniele MarinazzoJesus M. Cortes

subject

FOS: Computer and information sciencesgranger causality (GC)Multivariate statisticsComputer scienceRestComputer Science - Information TheoryBiomedical EngineeringsynergyFOS: Physical sciencescomputer.software_genre01 natural sciences03 medical and health sciences0302 clinical medicineGranger causality0103 physical sciencesConnectomeRedundancy (engineering)HumansBrain connectivityTime series010306 general physicsModels StatisticalHuman Connectome ProjectResting state fMRIredundancybusiness.industryInformation Theory (cs.IT)functional magnetic resonance imaging (fMRI)BrainPattern recognitionComplex networkMagnetic Resonance ImagingVariable (computer science)Physics - Data Analysis Statistics and ProbabilityQuantitative Biology - Neurons and CognitionFOS: Biological sciencesSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaPairwise comparisonNeurons and Cognition (q-bio.NC)Artificial intelligenceData miningNerve Netbusinesscomputer030217 neurology & neurosurgeryData Analysis Statistics and Probability (physics.data-an)

description

Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficult to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. Results: We report the application of the proposed approach to resting state fMRI data from the Human Connectome Project, showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, whilst synergy occurs mainly between non-homologous pairs of regions in opposite hemispheres. Conclusions: Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. Significance: The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits.

https://dx.doi.org/10.48550/arxiv.1504.03584