6533b7cffe1ef96bd1258585

RESEARCH PRODUCT

Developments in the dehydrogenative electrochemical synthesis of 3,3′,5,5′-tetramethyl-2,2′-biphenol

Robert FrankeSiegfried R. WaldvogelBarbara GleedeMaximilian Selt

subject

Green chemistry540 Chemistry and allied sciencespolycycles010405 organic chemistryChemistryoxidationOrganic ChemistryC−C couplingMinireviewsGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesCombinatorial chemistryCatalysis0104 chemical sciencesC c couplingelectrochemistry540 Chemiesustainable chemistryMinireviewC−C Coupling | Reviews Showcase

description

Abstract The symmetric biphenol 3,3′,5,5′‐tetramethyl‐2,2′‐biphenol is a well‐known ligand building block and is used in transition‐metal catalysis. In the literature, there are several synthetic routes for the preparation of this exceptional molecule. Herein, the focus is on the sustainable electrochemical synthesis of 3,3′,5,5′‐tetramethyl‐2,2′‐biphenol. A brief overview of the developmental history of this inconspicuous molecule, which is of great interest for technical applications, but has many challenges for its synthesis, is provided. The electro‐organic method is a powerful, sustainable, and efficient alternative to conventional synthesis to obtain this symmetric biphenol up to the kilogram scale. Another section of this article is devoted to different process management strategies in batch‐type and flow electrolysis and their respective advantages.

https://dx.doi.org/10.25358/openscience-8160