6533b7cffe1ef96bd125860b

RESEARCH PRODUCT

Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging

Loïc BriandSophie BrenetEmilie BarouCharlotte HurotArnaud BuhotChristine BelloirYanxia Hou

subject

volatile organic compoundConformational change[SDV.BIO]Life Sciences [q-bio]/BiotechnologyOdorant bindingBiomedical EngineeringBiophysicsBiosensing Techniques02 engineering and technologyReceptors Odorant01 natural sciencesHexanal[SPI]Engineering Sciences [physics]chemistry.chemical_compoundElectrochemistryAnimalsVolatile organic compoundComputingMilieux_MISCELLANEOUSDetection limitchemistry.chemical_classificationVolatile Organic CompoundsChromatographyChemistry010401 analytical chemistryGeneral MedicineRepeatabilitySurface Plasmon Resonance021001 nanoscience & nanotechnologyRats0104 chemical sciencesSmellsurface plasmon resonance imagingofactory biosensor0210 nano-technologySelectivityBiosensorodorant binding proteinsBiotechnology

description

International audience; Nowadays, monitoring of volatile organic compounds (VOCs) is very important in various domains. In this work, we aimed to develop sensitive olfactory biosensors using odorant binding proteins (OBPs) as sensing materials. Three rat OBP3 derivatives with customized binding properties were designed and immobilized on the same chip for the detection of VOCs in solution by surface plasmon resonance imaging (SPRi). We demonstrated that the proteins kept their binding properties after the immobilization under optimized conditions. The obtained olfactory biosensors exhibited very low limits of detection in both concentration (200pM of beta-ionone) and in molecular weight of VOCs (100g/mol for hexanal). Such a performance obtained with SPRi in solution is especially remarkable. We hypothesized that the binding of VOCs to the active sites of OBPs induced a local conformational change in the proteins. This change would give rise to a variation of refractive index, to which SPRi is extremely sensitive. In addition, the olfactory biosensors showed a high selectivity especially at relatively low VOC concentrations. With optimized regeneration procedures, they also showed very good repeatability not only from measurement to measurement but also from chip to chip with a lifespan up to almost two months. These olfactory biosensors are particularly interesting for trace detection of VOCs in solution.

https://doi.org/10.1016/j.bios.2018.08.072