6533b7cffe1ef96bd1258610

RESEARCH PRODUCT

SOLAR DYNAMICS OBSERVATORY DISCOVERS THIN HIGH TEMPERATURE STRANDS IN CORONAL ACTIVE REGIONS

Fabio RealeFabio RealeLeon GolubGiovanni PeresGiovanni PeresEdward E. DelucaMassimiliano GuarrasiPaola Testa

subject

PhysicsSolar dynamics observatoryFOS: Physical sciencesAstronomy and AstrophysicsRapid pulseDirect imagingSun: corona Sun: UV radiationAstrophysicsPlasmaCoronal loopCoronaSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceCoronal planeSolar and Stellar Astrophysics (astro-ph.SR)

description

One scenario proposed to explain the million degrees solar corona is a finely-stranded corona where each strand is heated by a rapid pulse. However, such fine structure has neither been resolved through direct imaging observations nor conclusively shown through indirect observations of extended superhot plasma. Recently it has been shown that the observed difference in appearance of cool and warm coronal loops (~1 MK, ~2-3 MK, respectively) -- warm loops appearing "fuzzier" than cool loops -- can be explained by models of loops composed of subarcsecond strands, which are impulsively heated up to ~10 MK. That work predicts that images of hot coronal loops (>~6 MK) should again show fine structure. Here we show that the predicted effect is indeed widely observed in an active region with the Solar Dynamics Observatory, thus supporting a scenario where impulsive heating of fine loop strands plays an important role in powering the active corona.

https://doi.org/10.1088/2041-8205/736/1/l16