6533b7cffe1ef96bd12587fd

RESEARCH PRODUCT

Multixenobiotic resistance efflux activity in Daphnia magna and Lumbriculus variegatus

Eeva-riikka VehniäinenJussi Kukkonen

subject

fungiDaphnia magnaLumbriculus variegatusmultixenobiotic resistanceABC transfer proteinreproductive and urinary physiologyMXR activity

description

Multixenobiotic resistance is a phenomenon in which ATP-binding cassette (ABC) family proteins transfer harmful compounds out of cells. Daphnia magna and Lumbriculus variegatus are model species in aquatic ecotoxicology, but the presence and activity of ABC proteins have not been well described in these species. The aim of this work was to study the presence, activity, and inhibition of ABC transport proteins in D. magna and L. variegatus. The presence of abcb1 and abcc transcripts in 8–9-day-old D. magna was investigated by qRT-PCR. The activity of MXR in D. magna and L. variegatus was explored by influx of the fluorescent ABC protein substrates rhodamine B and calcein-AM, with and without the model inhibitors verapamil (unspecific ABC inhibitor), reversin 205 (ABCB1 inhibitor) and MK571 (ABCC inhibitor). Juvenile D. magna possessed all examined abcb and abcc transcripts, but only reversin 205 inhibited MXR activity. The MXR activity in L. variegatus was inhibited by MK571, and to a lesser extent by verapamil, whereas reversin 205 seemed to stimulate the transport activity. Whereas calcein-AM worked better as an MXR substrate in D. magna, rhodamine B was a better substrate for L. variegatus MXR activity measurements. This is the first report on MXR activity in the order Lumbriculida, subclass Oligochaeta, and class Clitellata. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201608103763