6533b7cffe1ef96bd1258ac9

RESEARCH PRODUCT

Measurement of the $2^+\rightarrow 0^+$ ground-state transition in the $\beta$ decay of $^{20}$F

O. S. KirsebomM. HukkanenA. KankainenW. H. TrzaskaD. F. StrömbergG. Martínez-pinedoK. AndersenE. BodewitsL. CaneteJ. CederkällT. EnqvistT. EronenH. O. U. FynboS. GeldhofR. De GrooteD. G. JenkinsA. JokinenP. JoshiA. KhanamJ. KostensaloP. KuusiniemiI. MooreM. MunchD. A. NesterenkoJ. D. OvejasH. PenttiläI. PohjalainenM. ReponenS. Rinta-antilaK. RiisagerA. De RoubinP. SchotanusP. C. SrivastavaJ. SuhonenJ. A. SwartzO. TengbladM. VilenS. VińalsJ. ÄYstö

subject

High Energy Physics::ExperimentNuclear Experiment

description

We report the first detection of the second-forbidden, non-unique, $2^+\rightarrow 0^+$, ground-state transition in the $\beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}\rm{F}^+$ beam produced at the IGISOL facility in Jyv\"askyl\"a, Finland, was implanted in a thin carbon foil and the $\beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $\beta$-decay branching ratio inferred from the measurement is $b_{\beta} = [ 0.41\pm 0.08\textrm{(stat)}\pm 0.07\textrm{(sys)}] \times 10^{-5}$ corresponding to $\log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $\beta$ transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars that develop degenerate oxygen-neon cores. Using the new experimental data, we argue that the astrophysical electron-capture rate on $^{20}$Ne is now known to within better than 25% at the relevant temperatures and densities.

10.1103/physrevc.100.065805http://arxiv.org/abs/1805.08149