6533b7cffe1ef96bd1258e67

RESEARCH PRODUCT

PerceptNet: A Human Visual System Inspired Neural Network for Estimating Perceptual Distance

Raul Santos-rodriguezAlexander HepburnJesús MaloValero LaparraRyan Mcconville

subject

FOS: Computer and information sciencesComputer Science - Machine LearningVisual perceptionComputer scienceImage qualitymedia_common.quotation_subjectFeature extractionMachine Learning (stat.ML)02 engineering and technology01 natural sciencesConvolutional neural networkhuman visual systemMachine Learning (cs.LG)010309 opticsStatistics - Machine LearningPerception0103 physical sciences0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringperceptual distancemedia_commonArtificial neural networkbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionElectrical Engineering and Systems Science - Image and Video Processingneural networksHuman visual system model020201 artificial intelligence & image processingArtificial intelligencebusiness

description

Traditionally, the vision community has devised algorithms to estimate the distance between an original image and images that have been subject to perturbations. Inspiration was usually taken from the human visual perceptual system and how the system processes different perturbations in order to replicate to what extent it determines our ability to judge image quality. While recent works have presented deep neural networks trained to predict human perceptual quality, very few borrow any intuitions from the human visual system. To address this, we present PerceptNet, a convolutional neural network where the architecture has been chosen to reflect the structure and various stages in the human visual system. We evaluate PerceptNet on various traditional perception datasets and note strong performance on a number of them as compared with traditional image quality metrics. We also show that including a nonlinearity inspired by the human visual system in classical deep neural networks architectures can increase their ability to judge perceptual similarity. Compared to similar deep learning methods, the performance is similar, although our network has a number of parameters that is several orders of magnitude less.

https://dx.doi.org/10.48550/arxiv.1910.12548