6533b7cffe1ef96bd1258ec0

RESEARCH PRODUCT

Gravitational Waves from the Papaloizou-Pringle Instability in Black-Hole-Torus Systems

Masaru ShibataKenta KiuchiJosé A. FontPedro J. Montero

subject

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeCosmology and Nongalactic Astrophysics (astro-ph.CO)Gravitational waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyAstronomyTorusGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsInstabilityGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyNumerical relativityStarsAstrophysics - Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics

description

Black hole (BH)--torus systems are promising candidates for the central engine of gamma-ray bursts (GRBs), and also possible outcomes of the collapse of supermassive stars to supermassive black holes (SMBHs). By three-dimensional general relativistic numerical simulations, we show that an $m=1$ nonaxisymmetric instability grows for a wide range of self-gravitating tori orbiting BHs. The resulting nonaxisymmetric structure persists for a timescale much longer than the dynamical one, becoming a strong emitter of large amplitude, quasiperiodic gravitational waves. Our results indicate that both, the central engine of GRBs and newly formed SMBHs, can be strong gravitational wave sources observable by forthcoming ground-based and spacecraft detectors.

https://doi.org/10.1103/physrevlett.106.251102