6533b7cffe1ef96bd12590e0

RESEARCH PRODUCT

Odd triplet superconductivity induced by the moving condensate

A. M. BobkovMikhail SilaevMikhail SilaevI. V. Bobkova

subject

SuperconductivityPhysicsJosephson effectLocal density of statesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesHeterojunction02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesMagnetic fieldSuperconductivity (cond-mat.supr-con)Coupling (physics)FerromagnetismCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesCooper pair010306 general physics0210 nano-technology

description

It has been commonly accepted that magnetic field suppresses superconductivity by inducing the ordered motion of Cooper pairs. We demonstrate that magnetic field can instead provide a generation of superconducting correlations by inducing the motion of superconducting condensate. This effect arises in superconductor/ferromagnet heterostructures in the presence of Rashba spin-orbital coupling. We predict the odd-frequency spin-triplet superconducting correlations called the Berezinskii order to be switched on at large distances from the superconductor/ferromagnet interface by the application of a magnetic field. This is shown to result in the unusual behaviour of Josephson effect and local density of states in superconductor/ferromagnet structures.

10.1103/physrevb.102.100507http://arxiv.org/abs/2001.02507