6533b7cffe1ef96bd12590e0
RESEARCH PRODUCT
Odd triplet superconductivity induced by the moving condensate
A. M. BobkovMikhail SilaevMikhail SilaevI. V. Bobkovasubject
SuperconductivityPhysicsJosephson effectLocal density of statesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesHeterojunction02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesMagnetic fieldSuperconductivity (cond-mat.supr-con)Coupling (physics)FerromagnetismCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesCooper pair010306 general physics0210 nano-technologydescription
It has been commonly accepted that magnetic field suppresses superconductivity by inducing the ordered motion of Cooper pairs. We demonstrate that magnetic field can instead provide a generation of superconducting correlations by inducing the motion of superconducting condensate. This effect arises in superconductor/ferromagnet heterostructures in the presence of Rashba spin-orbital coupling. We predict the odd-frequency spin-triplet superconducting correlations called the Berezinskii order to be switched on at large distances from the superconductor/ferromagnet interface by the application of a magnetic field. This is shown to result in the unusual behaviour of Josephson effect and local density of states in superconductor/ferromagnet structures.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-08 |