6533b7d0fe1ef96bd125a272

RESEARCH PRODUCT

Numerical Treatment of the Filament-Based Lamellipodium Model (FBLM)

Nikolaos SfakianakisAngelika ManhartDietmar OelzChristian Schmeiser

subject

0301 basic medicineFinite element spaceNumerical analysisPiecewise constant approximationMechanicsFinite element methodQuantitative Biology::Cell BehaviorQuantitative Biology::Subcellular ProcessesPiecewise linear functionProtein filament03 medical and health sciences030104 developmental biology0302 clinical medicineClassical mechanics030220 oncology & carcinogenesisBending stiffnessLamellipodiumMathematics

description

We describe in this work the numerical treatment of the Filament-Based Lamellipodium Model (FBLM). This model is a two-phase two-dimensional continuum model, describing the dynamics of two interacting families of locally parallel F-actin filaments. It includes, among others, the bending stiffness of the filaments, adhesion to the substrate, and the cross-links connecting the two families. The numerical method proposed is a Finite Element Method (FEM) developed specifically for the needs of this problem. It is comprised of composite Lagrange–Hermite two-dimensional elements defined over a two-dimensional space. We present some elements of the FEM and emphasize in the numerical treatment of the more complex terms. We also present novel numerical simulations and compare to in-vitro experiments of moving cells.

https://doi.org/10.1007/978-3-319-45833-5_7