6533b7d0fe1ef96bd125a272
RESEARCH PRODUCT
Numerical Treatment of the Filament-Based Lamellipodium Model (FBLM)
Nikolaos SfakianakisAngelika ManhartDietmar OelzChristian Schmeisersubject
0301 basic medicineFinite element spaceNumerical analysisPiecewise constant approximationMechanicsFinite element methodQuantitative Biology::Cell BehaviorQuantitative Biology::Subcellular ProcessesPiecewise linear functionProtein filament03 medical and health sciences030104 developmental biology0302 clinical medicineClassical mechanics030220 oncology & carcinogenesisBending stiffnessLamellipodiumMathematicsdescription
We describe in this work the numerical treatment of the Filament-Based Lamellipodium Model (FBLM). This model is a two-phase two-dimensional continuum model, describing the dynamics of two interacting families of locally parallel F-actin filaments. It includes, among others, the bending stiffness of the filaments, adhesion to the substrate, and the cross-links connecting the two families. The numerical method proposed is a Finite Element Method (FEM) developed specifically for the needs of this problem. It is comprised of composite Lagrange–Hermite two-dimensional elements defined over a two-dimensional space. We present some elements of the FEM and emphasize in the numerical treatment of the more complex terms. We also present novel numerical simulations and compare to in-vitro experiments of moving cells.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |