6533b7d0fe1ef96bd125a2d1
RESEARCH PRODUCT
A Model for High-Cycle Fatigue in Polycrystals
Ivano BenedettiVincenzo Gulizzisubject
010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringFatigue testingMicromechanicsGeneral Materials Science02 engineering and technology0101 mathematicsComposite material01 natural sciencesdescription
A grain-scale formulation for high-cycle fatigue inter-granular degradation in polycrystalline aggregates is presented. The aggregate is represented through Voronoi tessellations and the mechanics of individual bulk grains is modelled using a boundary integral formulation. The inter-granular interfaces degrade under the action of cyclic tractions and they are represented using cohesive laws embodying a local irreversible damage parameter that evolves according to high-cycle continuum damage laws. The consistence between cyclic and static damage, which plays an important role in the redistribution of inter-granular tractions upon cyclic degradation, is assessed at each fatigue solution jump, so to capture the onset of macro-failure. Few polycrystalline aggregates are tested using the developed technique, which may find application in multiscale modelling of engineering components as well as in the design of micro-electro-mechanical devices (MEMS).
year | journal | country | edition | language |
---|---|---|---|---|
2018-08-01 | Key Engineering Materials |