6533b7d0fe1ef96bd125a4b8
RESEARCH PRODUCT
A micro-mechanical model for grain-boundary cavitation in polycrystalline materials
Ivano BenedettiVincenzo GulizziAlberto Milazzosubject
Materials scienceDiscretizationMechanical EngineeringMetallurgyNucleationTime evolutionMicromechanicsMechanicsCreepBoundary elementCreepPolycrystalline materialMechanics of MaterialsGrain boundary cavitationCavitationGeneral Materials ScienceGrain boundaryMechanics of MaterialCrystalliteMaterials Science (all)Settore ING-IND/04 - Costruzioni E Strutture AerospazialiMicromechanicdescription
In this work, the grain-boundary cavitation in polycrystalline aggregates is investigated by means of a grain-scale model. Polycrystalline aggregates are generated using Voronoi tessellations, which have been extensively shown to retain the statistical features of real microstructures. Nucleation, thickening and sliding of cavities at grain boundaries are represented by specific cohesive laws embodying the damage parameters, whose time evolution equations are coupled to the mechanical model. The formulation is presented within the framework of a grain-boundary formulation, which only requires the discretization of the grain surfaces. Some numerical tests are presented to demonstrate the feasibility of the method.
year | journal | country | edition | language |
---|---|---|---|---|
2015-09-01 |