6533b7d0fe1ef96bd125b036

RESEARCH PRODUCT

Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos

C LabarreCharles DivièsJ.-f. CavinJean Guzzo

subject

DNA BacterialMalolactic enzymeLeuconostoc oenosMolecular Sequence DataRestriction MappingMalatesBiological Transport ActiveOrganic Anion TransportersSaccharomyces cerevisiaeBiologyPolymerase Chain ReactionApplied Microbiology and BiotechnologyMalate dehydrogenaseOpen Reading FramesBacterial ProteinsMalate DehydrogenaseGene cluster[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliLeuconostocAmino Acid SequenceCloning MolecularMalate transportDNA PrimersGenomic organizationBase SequenceSequence Homology Amino AcidEcologyLactococcus lactisNucleic acid sequenceMembrane Transport Proteinsbiology.organism_classificationMolecular biologymalate permeaseMolecular WeightOpen reading frameBiochemistryGenes BacterialLeuconostocResearch ArticleFood ScienceBiotechnology

description

Using degenerated primers from conserved regions of the protein sequences of malic enzymes, we amplified a 324-bp DNA fragment by PCR from Leuconostoc oenos and used this fragment as a probe for screening a Leuconostoc oenos genomic bank. Of the 2,990 clones in the genomic bank examined, 7 with overlapping fragments were isolated by performing colony hybridization experiments. Sequencing 3,453 bp from overlapping fragments revealed two open reading frames that were 1,623 and 942 nucleotides long and were followed by a putative terminator structure. The first deduced protein (molecular weight, 59,118) is very similar (level of similarity, 66%) to the malolactic enzyme of Lactococcus lactis; as in several malic enzymes, highly conserved protein regions are present. The synthesis of a protein with an apparent molecular mass of 60 kDa was highlighted by the results of labelling experiments performed with Escherichia coli minicells. The gene was expressed in E. coli and Saccharomyces cerevisiae and conferred "malolactic activity" to these species. The second open reading frame encodes a putative 34,190-Da protein which has the characteristics of a carrier protein and may have 10 membrane-spanning segments organized around a central hydrophilic core. Energy-dependent L-[14C]malate transport was observed with E. coli dicarboxylic acid transport-deficient mutants carrying the malate permease-expressing vector. Our results suggest that in Leuconostoc oenos the genes that encode the malolactic enzyme and a malate carrier protein are organized in a cluster.

https://doi.org/10.1128/aem.62.4.1274-1282.1996