6533b7d0fe1ef96bd125b03e

RESEARCH PRODUCT

A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of Pseudo(mono)radical Azomethine Ylides with Phenyl Vinyl Sulphone

Mar Ríos-gutiérrezAssem BarakatLuis R. Domingo

subject

Molecular Electron Density Theory; azomethine ylides; [3+2] cycloaddition reaction; molecular mechanism; selectivity; reactivityGeneral Medicine

description

The [3+2] cycloaddition (32CA) reaction of an azomethine ylide (AY), derived from isatin and L-proline, with phenyl vinyl sulphone has been studied within Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) level. ELF topological analysis of AY classifies it as a pseudo(mono)radical species with two monosynaptic basins at the C1 carbon, integrating a total of 0.76 e. While vinyl sulphone has a strong electrophilic character, AY is a supernucleophile, suggesting a high polar character and low activation energy for the reaction. The nucleophilic Parr functions indicate that the pseudoradical C1 carbon is the most nucleophilic center. The 32CA reaction presents an activation Gibbs free energy of 13.1 kcal·mol−1 and is exergonic by −26.8 kcal·mol−1. This reaction presents high endo stereoselectivity and high meta regioselectivity. Analysis of the global electron density transfer (GEDT) at the most favorable meta/endo TS, 0.31 e, accounts for the high polar character of this 32CA reaction, classified by forward electron density flux (FEDF). A Bonding Evolution Theory (BET) study along the most favorable meta/endo reaction path characterizes this 32CA reaction, taking place through a non-concerted two-stage one-step mechanism, as a pseudo(mono)radical-type 32CA reaction, in agreement with the ELF analysis of the AY.

https://dx.doi.org/10.5281/zenodo.6786608