6533b7d0fe1ef96bd125b83d
RESEARCH PRODUCT
Building energy performance forecasting: A multiple linear regression approach
A. D'amicoGiuseppina Ciullasubject
Decision support systemComputer scienceCalibration (statistics)020209 energy02 engineering and technologyManagement Monitoring Policy and LawBuilding energy demandsymbols.namesake020401 chemical engineeringLinear regression0202 electrical engineering electronic engineering information engineeringSensitivity (control systems)0204 chemical engineeringReliability (statistics)Multiple linear regressionSettore ING-IND/11 - Fisica Tecnica AmbientaleMechanical EngineeringBuilding and ConstructionIndustrial engineeringPearson product-moment correlation coefficientDynamic simulationIdentification (information)Black box methodGeneral EnergysymbolsForecast methodSensitivity analysisDynamic simulationdescription
Abstract Different ways to evaluate the building energy balance can be found in literature, including comprehensive techniques, statistical and machine-learning methods and hybrid approaches. The identification of the most suitable approach is important to accelerate the preliminary energy assessment. In the first category, several numerical methods have been developed and implemented in specialised software using different mathematical languages. However, these tools require an expert user and a model calibration. The authors, in order to overcome these limitations, have developed an alternative, reliable linear regression model to determine building energy needs. Starting from a detailed and calibrated dynamic model, it was possible to implement a parametric simulation that solves the energy performance of 195 scenarios. The lack of general results led the authors to investigate a statistical method also capable of supporting an unskilled user in the estimation of the building energy demand. To guarantee high reliability and ease of use, a selection of the most suitable variables was conducted by careful sensitivity analysis using the Pearson coefficient. The Multiple Linear Regression method allowed the development of some simple relationships to determine the thermal heating or cooling energy demand of a generic building as a function of only a few, well-known parameters. Deep statistical analysis of the main error indices underlined the high reliability of the results. This approach is not targeted at replacing a dynamic simulation model, but it represents a simple decision support tool for the preliminary assessment of the energy demand related to any building and any weather condition.
year | journal | country | edition | language |
---|---|---|---|---|
2019-11-01 |