6533b7d1fe1ef96bd125c282

RESEARCH PRODUCT

Lattice Boltzmann versus Molecular Dynamics simulations of nanoscale hydrodynamic flows

Juergen HorbachSauro Succi

subject

PhysicsCondensed Matter - Materials ScienceNanostructureLattice Boltzmann methodsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyDisordered Systems and Neural Networks (cond-mat.dis-nn)MechanicsCondensed Matter - Disordered Systems and Neural NetworksNanostructuresMolecular dynamicsModels ChemicalFluid dynamicsThermodynamicsComputer SimulationVector fieldStatistical physicsThin filmNanoscopic scale

description

A fluid flow in a simple dense liquid, passing an obstacle in a two-dimensional thin film geometry, is simulated by Molecular Dynamics (MD) computer simulation and compared to results of Lattice Boltzmann (LB) simulations. By the appropriate mapping of length and time units from LB to MD, the velocity field as obtained from MD is quantitatively reproduced by LB. The implications of this finding for prospective LB-MD multiscale applications are discussed.

10.1103/physrevlett.96.224503https://publications.cnr.it/doc/7924