6533b7d1fe1ef96bd125c2fd
RESEARCH PRODUCT
Searching for Earth/Solar axion halos
Victor V. FlambaumVictor V. FlambaumGilad PerezHyungjin KimJoshua EbyDmitry BudkerDmitry BudkerAbhishek BanerjeeOleksii Matsedonskyisubject
Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)Physics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyCP violationBeyond Standard Modellcsh:QC770-798CP violationHaloEarth (classical element)Astrophysics - Cosmology and Nongalactic AstrophysicsCoherence (physics)description
We discuss the sensitivity of the present and near-future axion dark matter experiments to a halo of axions or axion-like particles gravitationally bound to the Earth or the Sun. The existence of such halos, assuming they are formed, renders a significant gain in the sensitivity of axion searches while satisfying all the present experimental bounds. The structure and coherence properties of these halos also imply novel signals, which can depend on the latitude or orientation of the detector. We demonstrate this by analysing the sensitivity of several distinct types of axion dark matter experiments.
year | journal | country | edition | language |
---|---|---|---|---|
2020-09-01 | Journal of High Energy Physics |