6533b7d1fe1ef96bd125c405

RESEARCH PRODUCT

Identification of strong and weak interacting two level systems in KBr:CN

Alejandro Gaita-ariñoMoshe Schechter

subject

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsPhysical systemMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyDisordered Systems and Neural Networks (cond-mat.dis-nn)02 engineering and technologyCondensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physics0210 nano-technologyQuantum tunnelling

description

Tunneling two level systems (TLSs) are believed to be the source of phenomena such as the universal low temperature properties in disordered and amorphous solids, and $1/f$ noise. The existence of these phenomena in a large variety of dissimilar physical systems testifies for the universal nature of the TLSs, which however, is not yet known. Following a recent suggestion that attributes the low temperature TLSs to inversion pairs [M. Schechter and P.C.E. Stamp, arXiv:0910.1283.] we calculate explicitly the TLS-phonon coupling of inversion symmetric and asymmetric TLSs in a given disordered crystal. Our work (a) estimates parameters that support the theory in M. Schechter and P.C.E. Stamp, arXiv:0910.1283, in its general form, and (b) positively identifies, for the first time, the relevant TLSs in a given system.

10.1103/physrevlett.107.105504http://arxiv.org/abs/1012.1852