6533b7d1fe1ef96bd125ccf4

RESEARCH PRODUCT

New insights into the use of rhizobia to mitigate soil N2O emissions

Catherine HénaultElodie BarbierAlain HartmannCécile Revellin

subject

[SDV] Life Sciences [q-bio]N<sub>2</sub>O mitigation; rhizobia; legumes; <i>nosZ</i> gene; phenotypes; multiscale approachfood and beveragesPlant Scienceequipment and suppliesAgronomy and Crop ScienceFood Science

description

Agriculture is a major anthropogenic source of the greenhouse gas N2O, which is also involved in stratospheric ozone depletion. While the use of rhizobial inoculants has already been reported as an emerging option for mitigating soil N2O emissions, this study presents an in situ abatement of 70% of soil N2O emission using the strain nosZ+ G49 vs. nosZ− USDA138 in association with soybean. Therefore, we consider that the choice of the inoculant strain of a leguminous crop should take into account the capacity of strains to reduce nitrous oxide in addition to their N fixation capacity. This study also clearly suggests that this mitigation option could be considered not only for soybean but also for different leguminous crops, with emphasis currently placed on lupin because of the potential of its association with the nosZ+ LL200 strain. The clear demonstration of the N2O reduction capacity of clover symbiotic strains suggests that opportunities for mitigation might also occur on grassland.

https://hal.inrae.fr/hal-04059294