6533b7d1fe1ef96bd125ce92

RESEARCH PRODUCT

Manifestation of Hamiltonian Monodromy in Nonlinear Wave Systems

Hans-rudolf JauslinAntonio PicozziClaire MichelElie AssématDominique Sugny

subject

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Integrable system010102 general mathematicsGeneral Physics and AstronomyNonlinear opticsPhase singularity01 natural sciencessymbols.namesakeNonlinear systemClassical mechanicsMonodromy0103 physical sciencessymbolsBoundary value problem0101 mathematics010306 general physicsHamiltonian (quantum mechanics)Adiabatic process

description

International audience; We show that the concept of dynamical monodromy plays a natural fundamental role in the spatiotemporal dynamics of counterpropagating nonlinear wave systems. By means of an adiabatic change of the boundary conditions imposed to the wave system, we show that Hamiltonian monodromy manifests itself through the spontaneous formation of a topological phase singularity (2 - or -phase defect) in the nonlinear waves. This manifestation of dynamical Hamiltonian monodromy is illustrated by generic nonlinear wave models. In particular, we predict that its measurement can be realized in a direct way in the framework of a nonlinear optics experiment.

https://doi.org/10.1103/physrevlett.106.014101