6533b7d1fe1ef96bd125d76c

RESEARCH PRODUCT

Ab initio modelling of the effects of varying Zr (Ti) concentrations on the atomic and electronic properties of stoichiometric PZT solid solutions

Yu. F. ZhukovskiiSergei PiskunovAleksejs Gopejenko

subject

ChemistryBand gapAb initioAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsLead zirconate titanate01 natural sciencesBiochemistryFerroelectricityComputer Science::OtherCondensed Matter::Materials Sciencechemistry.chemical_compoundLattice constantComputational chemistry0103 physical sciencesDensity of statesPhysical and Theoretical Chemistry010306 general physics0210 nano-technologyElectronic band structureSolid solution

description

Abstract Lead zirconate titanate Pb(ZrxTi1−x)O3 solid solution is considered as one of the most advanced ferroelectric and piezoelectric materials. Consequent variation of Zr (Ti) concentrations significantly affects the atomic and electronic properties of PZT structures. To perform ab initio modelling of different morphologies for lead zirconate titanate, we are using approach of hybrid density functional B3PW as implemented in CRYSTAL14 computer code. In this study, we are performing large-scale calculations of such PZT parameters as optimized lattice constants, atomic charges and bond populations, as well as band structure (e.g., band gap) and density of states.

https://doi.org/10.1016/j.comptc.2017.02.006