6533b7d1fe1ef96bd125d89d
RESEARCH PRODUCT
Computational modeling and experimental characterization of fluid dynamics in micro-CT scanned scaffolds within a multiple-sample airlift perfusion bioreactor
Elisa CapuanaSimona CamporaGiorgio CatanzaroFrancesco LoprestiGioacchino ConoscentiGiulio GhersiVincenzo La CarrubbaValerio BrucatoFrancesco Carfì Paviasubject
Micro-computed tomographySettore ING-IND/24 - Principi Di Ingegneria ChimicaEnvironmental EngineeringTissue EngineeringBiomedical EngineeringSettore ING-IND/34 - Bioingegneria IndustrialeDynamic cell cultureBioengineeringAirlift perfusion bioreactorComputational Fluid Dynamics simulationBiotechnologydescription
The perfusion of flow during cell culture induces cell proliferation and enhances cellular activity. Perfusion bioreactors offer a controlled dynamic environment for reliable in vitro applications in the tissue engineering field. In this work, to evaluate the effects of the operating parameters of a custom-made bioreactor, numerical simulations were performed to solve the fluid velocity profile inside the bioreactor containing multi-grid support that allows allocating of multiple seeded scaffolds at the same time. The perfusion system exhibited a uniform distribution of liquid velocities within the regions, suitable for cell growth on seeded scaffolds. The effects of the porous microstructure of scaffolds on the extracellular matrix deposition also play a crucial role during perfusion cultures. In the present study, a numerical simulation was implemented at the pore level of the scaffold for fluid flow through porous media during perfused culture. Micro-computed tomography was used to obtain the digital 3D image of the complex geometry of a PLLA scaffold, offering a detailed analysis from a volume-based methodology without simplifications of the results as for pore or Darcy's law-models. Predictions about the uniformity of the flow field through the scaffolds-bioreactor system have been assessed by quantifying the cell viability of a perfusion culture while using pre-osteoblastic cells seeded on 24 PLLA scaffolds for up to 6 days.
year | journal | country | edition | language |
---|---|---|---|---|
2023-02-01 | Biochemical Engineering Journal |