6533b7d2fe1ef96bd125e080

RESEARCH PRODUCT

Impact of electromagnetic fields and heat on spin transport signals in Y$_{3}$Fe$_{5}$O$_{12}$

Joel CramerLorenzo BaldratiAndrew RossMehran VafaeeRomain LebrunMathias Kläui

subject

Condensed Matter - Materials ScienceCondensed Matter::Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physics530 PhysicsCondensed Matter::OtherMesoscale and Nanoscale Physics (cond-mat.mes-hall)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons530 Physik

description

Exploring new strategies to perform magnon logic is a key requirement for the further development of magnon-based spintronics. In this work, we realize a three-terminal magnon transport device to study the possibility of manipulating magnonic spin information transfer in a magnetic insulator via localized magnetic fields and heat generation. The device comprises two parallel Pt wires as well as a Cu center wire that are deposited on the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$. While the Pt wires act as spin current injector and detector, the Cu wire is used to create local magnetostatic fields and additional heat, which impact both the magnetic configuration and the magnons within the Y$_{3}$Fe$_{5}$O$_{12}$ below. We show that these factors can create a non-local signal that shows similar features as compared to an electrically induced magnon flow. Furthermore, a modulation of the spin transport signal between the Pt wires is observed, which can be partly explained by thermally excited spin currents of different polarization. Our results indicate a potential way towards the manipulation of non-local magnon signals, which could be useful for magnon logic.

https://dx.doi.org/10.48550/arxiv.1906.05631