6533b7d2fe1ef96bd125eb27
RESEARCH PRODUCT
Quantum control of ground-state rotational coherence in a linear molecule
R. ChauxF. Dalla ViaOlivier FaucherBruno LavorelEdouard Hertzsubject
PhysicsQuantum opticsQuantum phase transitionWAVE-PACKETSTRANSITIONSAtomic and Molecular Physics and OpticsPULSESTIME-RESOLVED DYNAMICSQuantum error correctionExcited stateQuantum mechanicsPrincipal quantum numberINDUCED CONTINUUM STRUCTURECoherent statesIONIZATIONAtomic physicsLASER CONTROLGround stateCoherence (physics)description
We present an experimental and theoretical investigation of the quantum control of ground-state rotational coherence in a linear molecule. A sequence of two temporally separated laser pulses creates a rotational superposition state in ${\mathrm{CO}}_{2}$ whose evolution is monitored through a polarization technique. We study the influence of the phase difference between the two pulses. We show that the overlapping of the two wave packets, produced by each pulse, gives rise to quantum interference that affects the orientational anisotropy of the sample. Because of the large number of coherently excited levels, the interference produces well-separated temporal structures, whose magnitude can be controlled through the relative delay of the two pulses.
year | journal | country | edition | language |
---|---|---|---|---|
2000-02-17 |