6533b7d2fe1ef96bd125eb91
RESEARCH PRODUCT
Radio emissions from double RHESSI TGFs
Steven A. CummerAndrew MezentsevDavid M. SmithNikolai ØStgaardThomas GjestelandThomas GjestelandKjetil AlbrechtsenMartino MarisaldiMartino MarisaldiNikolai Lehtinensubject
Atmospheric ScienceHigh energy010504 meteorology & atmospheric sciencesAtmospheric ElectricityFOS: Physical sciencesRHESSI clock offsetterrestrial gamma ray flashesAstrophysicsRadio atmospheric01 natural sciencesLightningPhysical Geography and Environmental GeoscienceAerosol and CloudsAtmospheric SciencesRemote SensingPhysics - Space Physics0103 physical sciencesEarth and Planetary Sciences (miscellaneous)Instruments and TechniquesVery low frequency010303 astronomy & astrophysicsResearch ArticlesTGF‐WWLLN match0105 earth and related environmental sciencesRadiative ProcessesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Remote Sensing and DisastersGamma raymultipeak TGFsWorld wideLightningRHESSI TGFsSpace Physics (physics.space-ph)Geophysicsradio emission from TGFClock offset13. Climate actionSpace and Planetary ScienceAtmospheric ProcessesAstrophysics - High Energy Astrophysical PhenomenaNatural HazardsResearch Articledescription
Abstract A detailed analysis of Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) terrestrial gamma ray flashes (TGFs) is performed in association with World Wide Lightning Location Network (WWLLN) sources and very low frequency (VLF) sferics recorded at Duke University. RHESSI clock offset is evaluated and found to experience changes on the 5 August 2005 and 21 October 2013, based on the analysis of TGF‐WWLLN matches. The clock offsets were found for all three periods of observations with standard deviations less than 100 μs. This result opens the possibility for the precise comparative analyses of RHESSI TGFs with the other types of data (WWLLN, radio measurements, etc.) In case of multiple‐peak TGFs, WWLLN detections are observed to be simultaneous with the last TGF peak for all 16 cases of multipeak RHESSI TGFs simultaneous with WWLLN sources. VLF magnetic field sferics were recorded for two of these 16 events at Duke University. These radio measurements also attribute VLF sferics to the second peak of the double TGFs, exhibiting no detectable radio emission during the first TGF peak. Possible scenarios explaining these observations are proposed. Double (multipeak) TGFs could help to distinguish between the VLF radio emission radiated by the recoil currents in the +IC leader channel and the VLF emission from the TGF producing electrons.
year | journal | country | edition | language |
---|---|---|---|---|
2016-07-14 |