6533b7d2fe1ef96bd125f547
RESEARCH PRODUCT
Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture
Alessia GalloG. SavettieriGabriella SchieraEpifania BonoGiovanna PitarresiItalia Di LiegroMaria Pia Raffasubject
brain capillary cortical neurons Coculture occludin tight junctionsCellDrug delivery to the brainblood brain barrierBiologyBlood–brain barrierOccludinArticleRats Sprague-DawleyastrocyteOccludinmedicineAnimalsCells CulturedNeuronsTight junctionMembrane ProteinsCell DifferentiationCell BiologyTransmembrane proteinCoculture TechniquesCell biologyCapillariesRatsmedicine.anatomical_structureBlood-Brain BarrierParacellular transportAstrocytesMolecular MedicineEndothelium VascularAstrocytedescription
Brain capillary endothelial cells form a functional barrier between blood and brain, based on the existence of tight junctions that limit paracellular permeability. Occludin is one of the major transmembrane proteins of tight junctions and its peripheral localization gives indication of tight junction formation. We previously reported that RBE4.B cells (brain capillary endothelial cells), cultured on collagen IV, synthesize occludin and correctly localize it at the cell periphery only when cocultured with neurons. In the present study, we describe a three-cell type-culture system that allowed us to analyze the combined effects of neurons and astrocytes on differentiation of brain capillary endothelial cells in culture. In particular, we found that, in the presence of astrocytes, the neuron-induced synthesis and localization of occludin is precocious as compared to cells cocultured with neurons only.
year | journal | country | edition | language |
---|---|---|---|---|
2003-04-01 |