6533b7d3fe1ef96bd125ff75
RESEARCH PRODUCT
Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures.
Gislayne Trindade Vilas-bôasJoaquín Gomis-cebollaJuan FerréAna Paula Scaramal RiciettoAna Paula Scaramal Riciettosubject
0106 biological sciences0301 basic medicineTortricidaeInsecticidesMoths01 natural sciencesLepidoptera genitalia03 medical and health sciencesHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyBioassayAnimalsPest Control BiologicalEcology Evolution Behavior and SystematicsbiologyBacillus thuringiensis Toxinsfungibiology.organism_classificationGrapholita molestaEndotoxins010602 entomologyHorticulture030104 developmental biologyCry1AcPEST analysisAntagonismdescription
The Oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), is a major pest of fruit trees worldwide, such as peach and apple. Bacillus thuringiensis has been shown to be an efficient alternative to synthetic insecticides in the control of many agricultural pests. The objective of this study was to evaluate the effectiveness of B. thuringiensis individual toxins and their mixtures for the control of G. molesta. Bioassays were performed with Cry1Aa, Cry1Ac, Cry1Ca, Vip3Aa, Vip3Af and Vip3Ca, as well as with the commercial products DiPel® and XenTari®. The most active proteins were Vip3Aa and Cry1Aa, with LC50 values of 1.8 and 7.5ng/cm2, respectively. Vip3Ca was nontoxic to this insect species. Among the commercial products, DiPel® was slightly, but significantly, more toxic than XenTari®, with LC50 values of 13 and 33ng commercial product/cm2, respectively. Since Vip3A and Cry1 proteins are expressed together in some insect-resistant crops, we evaluated possible synergistic or antagonistic interactions among them. The results showed moderate to high antagonism in the combinations of Vip3Aa with Cry1Aa and Cry1Ca.
year | journal | country | edition | language |
---|---|---|---|---|
2016-08-15 | Journal of invertebrate pathology |