6533b7d3fe1ef96bd12607df
RESEARCH PRODUCT
Walsh function analysis of 2-D generalized continuous systems
Basil G. MertziosWieslaw MarszalekFrank L. Lewissubject
Partial differential equationDifferential equationWeak solutionMathematical analysisMathematicsofComputing_NUMERICALANALYSISFirst-order partial differential equationParabolic partial differential equationComputer Science ApplicationsMethod of characteristicsControl and Systems EngineeringComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONElectrical and Electronic EngineeringSylvester equationUniversal differential equationMathematicsdescription
The importance of the generalized or singular 2D continuous systems are demonstrated by showing their use in the solution of partial differential equations in two variables. A technique is presented for solving these systems in terms of Walsh functions. The method replaces the solution of a two-variable partial differential equation with the solution of a linear algebraic generalized 2D Sylvester equation. An efficient technique for the recursive solution of the latter equation is offered. All the results apply also in the usual Roesser 2D state-space case. >
year | journal | country | edition | language |
---|---|---|---|---|
1990-01-01 | IEEE Transactions on Automatic Control |