6533b7d3fe1ef96bd1260a92

RESEARCH PRODUCT

From $1$ to $6$: a finer analysis of perturbed branching Brownian motion

Lisa HartungAnton Bovier

subject

LogarithmApplied MathematicsGeneral MathematicsProbability (math.PR)010102 general mathematicsSigmaOrder (ring theory)Branching (polymer chemistry)01 natural sciences010104 statistics & probability60J80 60G70 82B44FOS: Mathematics0101 mathematicsBrownian motionMathematics - ProbabilityMathematicsMathematical physics

description

The logarithmic correction for the order of the maximum for two-speed branching Brownian motion changes discontinuously when approaching slopes $\sigma_1^2=\sigma_2^2=1$ which corresponds to standard branching Brownian motion. In this article we study this transition more closely by choosing $\sigma_1^2=1\pm t^{-\alpha}$ and $\sigma_2^2=1\pm t^{-\alpha}$. We show that the logarithmic correction for the order of the maximum now smoothly interpolates between the correction in the iid case $\frac{1}{2\sqrt 2}\ln(t),\;\frac{3}{2\sqrt 2}\ln(t)$ and $\frac{6}{2\sqrt 2}\ln(t)$ when $0<\alpha<\frac{1}{2}$. This is due to the localisation of extremal particles at the time of speed change which depends on $\alpha$ and differs from the one in standard branching Brownian motion. We also establish in all cases the asymptotic law of the maximum and characterise the extremal process, which turns out to coincide essentially with that of standard branching Brownian motion.

http://arxiv.org/abs/1808.05445